cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A161597 Numbers such that TITO(n) = n, where TITO(n) = A161594(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 37, 39, 41, 43, 44, 46, 47, 53, 55, 59, 61, 62, 66, 67, 69, 71, 73, 77, 79, 82, 83, 86, 88, 89, 93, 97, 99, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Views

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Comments

TITO(p) = p, for any prime p.

Crossrefs

Complement of A161598; nonprimes: A161600.

Programs

  • Haskell
    a161597 n = a161597_list !! (n-1)
    a161597_list = filter (\x -> a161594 x == x) [1..]
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Select[Range[200], f[ # ] == # &]
  • PARI
    is(n)={n==A161594(n)} \\ M. F. Hasler, May 11 2015

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Offset corrected by Reinhard Zumkeller, Oct 14 2011

A161600 Nonprime numbers such that TITO(n) = n, where TITO(n) = A161594(n).

Original entry on oeis.org

1, 4, 6, 8, 9, 22, 26, 33, 39, 44, 46, 55, 62, 66, 69, 77, 82, 86, 88, 93, 99, 121, 143, 169, 187, 202, 206, 226, 242, 252, 253, 262, 286, 299, 303, 309, 339, 341, 343, 363, 393, 404, 422, 446, 451, 466, 473, 482, 484, 505, 525, 583, 606, 616, 622, 626, 633, 662, 669, 671, 682, 686
Offset: 1

Views

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Crossrefs

Cf. A010051, A161594; subsequence of A161597.

Programs

  • Haskell
    a161600 n = a161600_list !! (n-1)
    a161600_list = filter ((== 0) . a010051) a161597_list
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k; f[n_] := FromDigits[Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]]; Select[Range[600], f[#] == # && ! PrimeQ[#] &]
  • PARI
    is(n)=!isprime(n)&&n==A161594(n) \\ M. F. Hasler, May 11 2015

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Offset corrected by Reinhard Zumkeller, Oct 14 2011
Minor edits and more displayed terms from M. F. Hasler, May 11 2015

A161598 Numbers such that TITO(n) is not equal to n, where TITO(n) = A161594(n).

Original entry on oeis.org

10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 34, 35, 36, 38, 40, 42, 45, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 63, 64, 65, 68, 70, 72, 74, 75, 76, 78, 80, 81, 84, 85, 87, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116
Offset: 1

Views

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Comments

There are no prime numbers in the sequence: A010051(a(n)) = 0.

Crossrefs

Complement of A161597.

Programs

  • Haskell
    a161598 n = a161598_list !! (n-1)
    a161598_list = filter (\x -> a161594 x /= x) [1..]
    -- Reinhard Zumkeller, Oct 14 2011
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Select[Range[200], f[ # ] != # &]

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Offset corrected by Reinhard Zumkeller, Oct 14 2011

A161730 Palindromic numbers that are fixed points of the TITO operation (see A161594) and are not products of palindromic primes.

Original entry on oeis.org

72927, 76167, 434434, 868868, 1226221, 4778774, 5703075, 8755578, 9386839, 13488431, 43877834, 123848321, 564414465, 777555777, 1072772701, 1946776491, 9935115399, 12467976421, 52854045825, 74663436647, 83361616338, 95829592859
Offset: 1

Views

Author

Tanya Khovanova, Jun 17 2009

Keywords

Comments

The numbers in this sequence are palindromic numbers that are fixed points of the TITO operation and are not primes and are not in A046351.

Crossrefs

Programs

  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] rev[n_] := FromDigits[Reverse[IntegerDigits[n]]] Select[Range[5000000], rev[ # ] == # && ! PrimeQ[ # ] && f[ # ] == # && Map[rev, Transpose[FactorInteger[ # ]][[1]]] != Transpose[FactorInteger[ # ]][[1]] &]
  • PARI
    for( d=1,19, my(p=10^((d+1)\2),q=10^(d%2)); for( i=p\10,p-1, my(n = i\q*p+R(i),f); A161594(n)==n || next; apply(R,f=factor(n)[,1])==f && next; print1(n",") )) /* uses definitions given in A161594 */ \\ M. F. Hasler, Jun 25 2009

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Terms beyond a(6) from M. F. Hasler, Jun 25 2009

A161955 TITO2(n): The operation A161594 in binary, digit-reversals carried out in base 2.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 19, 13, 27, 7, 29, 15, 31, 1, 57, 17, 49, 9, 37, 19, 33, 5, 41, 21, 43, 11, 45, 23, 47, 3, 35, 19, 51, 13, 53, 27, 65, 7, 105, 29, 59, 15, 61, 31, 63, 1, 59, 57, 67, 17, 117, 49, 71, 9, 73, 37, 105, 19, 109
Offset: 1

Views

Author

Tanya Khovanova, Jun 22 2009

Keywords

Comments

The TITO function in binary: Represent n as a product of its prime factors in binary.
Revert the binary digits of each of these factors, then multiply them with the same multiplicities as in n--so the base-2 representation does not affect the exponents in the canonical prime factorization. Reverse the product in binary to get a(n).

Examples

			To calculate TITO2(n=99): 99 = 3^3*11. Prime factors 3 and 11 in binary are 11 and 1011 correspondingly. Reversing those numbers we get 11 and 1101. The product with multiplicities is the binary product of 11*11*1101 = 1110101. Reversing that we get 1010111, which corresponds to 87. Hence a(99) = 87.
		

Crossrefs

Cf. A161594.

Programs

  • Maple
    r:= proc(n) local m, t; m, t:=n, 0; while m>0
          do t:=2*t+irem(m, 2, 'm') od; t end:
    a:= n-> r(mul(r(i[1])^i[2], i=ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 29 2017
  • Mathematica
    reverseBinPower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n, 2]], 2]^k fBin[n_] := FromDigits[ Reverse[IntegerDigits[ Times @@ Map[reverseBinPower, FactorInteger[n]], 2]], 2] Table[fBin[n], {n, 200}]

Formula

a(n) = A030101(A162742(n)) - R. J. Mathar, Aug 03 2009

Extensions

Edited by R. J. Mathar, Aug 03 2009

A161732 Fixed points of the TITO operation (A161594) that are also composite palindromes.

Original entry on oeis.org

4, 6, 8, 9, 22, 33, 44, 55, 66, 77, 88, 99, 121, 202, 242, 252, 262, 303, 343, 363, 393, 404, 484, 505, 525, 606, 616, 626, 686, 707, 808, 909, 939, 1111, 1331, 1441, 1661, 1991, 2112, 2222, 2662, 2772, 2882, 3333, 3443, 3773, 3883, 3993, 4224, 4444, 5445
Offset: 1

Views

Author

Tanya Khovanova, Jun 17 2009

Keywords

Comments

This sequence is a proper superset of A046351 (palindromic composite numbers with only palindromic prime factors). The smallest number that doesn't belong to A046351 is 72927. The numbers that are in this sequence and are not in A046351 are given in A161730.

Crossrefs

Programs

  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] rev[n_] := FromDigits[Reverse[IntegerDigits[n]]] Select[Range[10000], f[ # ] == # && rev[ # ] == # && ! PrimeQ[ # ] &]

Extensions

Edited by N. J. A. Sloane, Jun 23 2009

A162151 Numbers n such that m=TITO(n)>n and TITO(m)=n, where TITO() = A161594().

Original entry on oeis.org

12, 18, 24, 27, 36, 45, 48, 132, 144, 156, 198, 264, 276, 288, 291, 297, 372, 375, 396, 405, 492, 495, 528, 576, 1089, 1212, 1236, 1287, 1356, 1359, 1452, 1572, 1584, 1629, 1683, 1728, 1812, 1818, 2002, 2067, 2079, 2178, 2304, 2424, 2532, 2676, 2721, 2727
Offset: 1

Views

Author

Zak Seidov, Jun 26 2009

Keywords

Comments

Or, numbers that end in two-cycles under TITO operation.

Examples

			For smaller n's, m is a reversal of n, but for larger n's, there are other cases as well:{12,21},{18,81},{24,42},{27,72},...,{291,732},...,{372,651}, etc.
		

Crossrefs

Formula

m=A161594(n)>n, and A161594(m)=n.

A071786 In prime factorization of n replace each prime with its reversal (in decimal notation).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 31, 14, 15, 16, 71, 18, 91, 20, 21, 22, 32, 24, 25, 62, 27, 28, 92, 30, 13, 32, 33, 142, 35, 36, 73, 182, 93, 40, 14, 42, 34, 44, 45, 64, 74, 48, 49, 50, 213, 124, 35, 54, 55, 56, 273, 184, 95, 60, 16, 26, 63, 64, 155, 66, 76, 284, 96, 70, 17, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2002

Keywords

Comments

The range of A007500 is a subset of the range of this sequence. - Reinhard Zumkeller, Jul 06 2009
Prime factors counted with multiplicity. - Harvey P. Dale, Jul 08 2017

Examples

			a(143) = a(11*13) = a(11)*a(13) = 11*31 = 341.
		

Crossrefs

Cf. A151764, A161594, A151765. For records see A151766, A151767.
Cf. A151768 (complement), A376858 (fixed points).
Cf. A027746.

Programs

  • Haskell
    a071786 = product . map a004086 . a027746_row
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Maple
    read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: # R. J. Mathar, Jun 16 2009
    # second Maple program:
    r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
    a:= n-> mul(r(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 19 2017
  • Mathematica
    Table[Times@@IntegerReverse/@Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]],{n,80}] (* Harvey P. Dale, Jul 08 2017 *)
  • PARI
    rev(n)=fromdigits(Vecrev(digits(n)))
    a(n)=my(f=factor(n)); prod(i=1,#f~,rev(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
  • Python
    from sympy import factorint
    from operator import mul
    from functools import reduce
    def A071786(n):
        return 1 if n==1 else reduce(mul,(int(str(p)[::-1])**e for p,e in factorint(n).items())) # Chai Wah Wu, Aug 14 2014
    

Formula

Completely multiplicative with a(p) = A004086(p), p prime.
a(A000040(n)) = A004087(n).

A151765 a(n) = f(R(n)), where f(n) = A071786(n), R(n) = A004086(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 14, 213, 16, 17, 81, 217, 2, 12, 22, 32, 42, 124, 26, 72, 28, 128, 3, 31, 32, 33, 34, 35, 63, 37, 38, 39, 4, 14, 24, 142, 44, 54, 64, 146, 84, 148, 5, 15, 25, 35, 45, 55, 155, 75, 355, 455, 6, 16, 62, 36, 64, 56, 66, 364, 68, 96, 7, 71, 27
Offset: 1

Views

Author

N. J. A. Sloane, Jun 22 2009

Keywords

Crossrefs

Programs

A161721 Primes p such that the reversal of p is prime and the product of p with its reversal is a palindrome.

Original entry on oeis.org

2, 3, 11, 101, 1021, 1201, 111211, 112111, 1000211, 1010201, 1020101, 1101211, 1102111, 1111021, 1112011, 1120001, 1121011, 1201111, 10011101, 10012001, 10021001, 10100201, 10111001, 10200101, 11012011, 11021011, 11100121, 12100111
Offset: 1

Views

Author

Tanya Khovanova, Jun 17 2009

Keywords

Comments

This sequence is a subsequence of A062936. If you multiply a member of this sequence by its reversal you get a number fixed under TITO algorithm (see A161594).
Conjecture: except for a(2) which equals 3, all terms can only be composed of the digits 0, 1 or 2. - Chai Wah Wu, Jan 07 2015
Conjecture: the digit 2 can only appear once in each term. - Robert G. Wilson v, Jan 07 2015
Number of terms less than 10^n: 2, 3, 4, 6, 6, 8, 18, 28, 37, 65, 97, 153, 230, 304, 414, 556, 756, 960, 1255, ... - Robert G. Wilson v, Jan 07 2015
A proper subset of A007500. - Robert G. Wilson v, Jan 07 2015

Examples

			1021 is a prime number, its reversal is 1201, which is also a prime. The product 1021*1201 = 1226221 is a palindrome.
		

Crossrefs

Programs

  • Maple
    rev := proc (n) local nn: nn := convert(n, base, 10): add(nn[j]*10^(nops(nn)-j), j = 1 .. nops(nn)) end proc: a := proc (n) local p: p := ithprime(n): if isprime(rev(p)) = true and rev(p*rev(p)) = p*rev(p) then p else end if end proc: seq(a(n), n = 1 .. 800000); # Emeric Deutsch, Jun 26 2009
  • Mathematica
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; t={}; Do[p=Prime[n]; If[PrimeQ[q=rev[p]] && rev[p*q]==p*q, AppendTo[t,p]], {n,8*10^5}]; t (* Jayanta Basu, May 11 2013 *)
  • Python
    from sympy import isprime
    A161721_list = [2]
    for i in range(3,10**6,2):
        j = int(str(i)[::-1])
        if j == i:
            s = str(i**2)
            if s == s[::-1] and isprime(i):
                A161721_list.append(i)
        elif j > i:
            s = str(i*j)
            if s == s[::-1] and isprime(i) and isprime(j):
                A161721_list.extend([i,j])
    A161721_list = sorted(A161721_list) # Chai Wah Wu, Jan 07 2015

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
More terms from Emeric Deutsch, Jun 26 2009
Showing 1-10 of 11 results. Next