cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A063118 Dimension of the space of weight 2n cusp forms for Gamma_0(50).

Original entry on oeis.org

2, 17, 31, 47, 61, 77, 91, 107, 121, 137, 151, 167, 181, 197, 211, 227, 241, 257, 271, 287, 301, 317, 331, 347, 361, 377, 391, 407, 421, 437, 451, 467, 481, 497, 511, 527, 541, 557, 571, 587, 601, 617, 631, 647, 661, 677, 691, 707, 721, 737, 751, 767, 781
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2001

Keywords

Comments

Appears to agree with the first 11-section of A186042 except for the first term of both sequences (verified up to a(10000)). - Klaus Brockhaus, Mar 10 2011

Examples

			G.f. = 2*x + 17*x^2 + 31*x^3 + 47*x^4 + 61*x^5 + 77*x^6 + 91*x^7 + 107*x^8 + 121*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [ Dimension(CuspForms(Gamma0(50), 2*n)): n in [1..55] ]; // Klaus Brockhaus, Mar 10 2011
    
  • Sage
    def a(n) : return( len( CuspForms( Gamma0( 50), 2*n, prec=1) . basis())); # Michael Somos, May 29 2013

Formula

From Klaus Brockhaus, Mar 10 2011: (Start)
G.f. (conjectured): x*(x^3 + 12*x^2 + 15*x + 2) / ((x - 1)^2*(x + 1)).
Recurrences (conjectured):
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 4;
a(n) = a(n-2) + 30 for n > 3. (End)
Closed formula (conjectured): a(n) = (30*n+(-1)^n-27)/2 for n > 1. - Bruno Berselli, Mar 10 2011
Recurrence (conjectured): a(n) = 2*a(n-1) -a(n-2) +2*(-1)^n, n > 3. - Vincenzo Librandi, Mar 24 2011
Conjecture: a(n) = A007775(4*n - 3), n > 1. - Bill McEachen, May 15 2022
Showing 1-1 of 1 results.