A379757 a(n) = a(n-1) + 1 with two exceptions: if a(n-1) is prime, a(n) = a(n-2) + a(n-1), or if a(n-1) is a power, a(n) = a(n-1) / (root factor), with initial three terms are 0, 1, 2.
0, 1, 2, 3, 5, 8, 4, 2, 6, 7, 13, 20, 21, 22, 23, 45, 46, 47, 93, 94, 95, 96, 97, 193, 290, 291, 292, 293, 585, 586, 587, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 2361, 2362, 2363, 2364, 2365, 2366, 2367, 2368, 2369, 2370, 2371, 4741, 4742, 4743
Offset: 1
Examples
We know a(1)=0, a(2)=1, a(3)=2. Since a(3) is prime, a(4)=a(2)+a(3)=3. Since a(4) is prime, a(5)=a(3)+a(4)=5. Similarly, a(6)=a(4)+a(5)=8. Since a(6) is a perfect power, a(7) = a(6)/2 since 8=2^3. Since a(7)=4 is another perfect power, a(8)=4/2=2. Since a(8) is prime, a(9)=a(7)+a(8)=6. For clarity, if a(n-1) = r^k, then a(n) = a(n-1)/r.
Programs
-
Mathematica
a[n_] := a[n] = If[n < 4, n-1, If[PrimeQ[a[n-1]], a[n-1] + a[n-2], If[(g = GCD @@ FactorInteger[a[n-1]][[;; , 2]]) > 1, a[n-1]^(1 - 1/g), a[n-1] + 1]]]; Array[a, 54] (* Amiram Eldar, Apr 10 2025 *)
Formula
Conjecture: log(a(n)) ~ k*sqrt(n).
Comments