A167535 Primes which are the concatenation of two squares (in decimal notation).
11, 19, 41, 149, 181, 251, 449, 491, 499, 641, 811, 1009, 1289, 1361, 1699, 2251, 2549, 4001, 4289, 4441, 4729, 6449, 6481, 6761, 7841, 8419, 9001, 9619, 10891, 11369, 11681, 12149, 12251, 12401, 12601, 12809, 13249, 13691, 13721, 14449, 14489
Offset: 1
Examples
11 = 1^2 * 10 + 1^2, 149 = 1^2 * 10^2 + 7^2, 1361 = 1^2 * 10^3 + 19^2. 14401 = 12^2 * 10^2 + 1^2 is not a term because included "0" (1^2=1 is 1-digit). 14449 = 12^2 * 10^2 + 7^2 = 38^2 * 10 + 3^2 is the smallest prime with 2 such representations.
References
- Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer 2005.
- Wladyslaw Narkiewicz, The Development of Prime Number Theory from Euclid to Hardy and Littlewood, Springer 2000.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..500
Programs
-
Haskell
a167535 n = a167535_list !! (n-1) a167535_list = filter ((> 0) . a193095) a000040_list -- Reinhard Zumkeller, Jul 17 2011
-
Maple
zcat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc; S:= select(t -> t <= 10^7 and isprime(t), {seq(seq(zcat(a^2,b^2),a=1..10^3),b=1..10^3,2)}): sort(convert(S,list)); # Robert Israel, Jun 17 2021
-
PARI
is_A167535(n)={ my(t=1); isprime(n) && while(n>t*=10, apply(issquare,divrem(n,t))==[1,1]~ && n%t*10>=t && return(1))} forprime(p=1,default(primelimit), is_A167535(p) && print1(p",")) \\ M. F. Hasler, Jul 24 2011
-
Python
from sympy import isprime def aupto(lim): s = list(i**2 for i in range(1, int(lim**(1/2))+2)) t = set(int(str(a)+str(b)) for a in s for b in s) return sorted(filter(isprime, filter(lambda x: x<=lim, t))) print(aupto(15000)) # Michael S. Branicky, Jun 17 2021
Formula
a(n) = m^2 * 10^k + n^2 for a k-digit square number n^2.
Extensions
11369 inserted by R. J. Mathar, Nov 07 2009
Comments