A379400 Numbers that can be written in exactly five different ways as a sum of at most nine positive third powers.
133, 145, 152, 153, 159, 160, 161, 163, 182, 190, 192, 196, 197, 198, 200, 201, 209, 218, 220, 223, 225, 226, 233, 234, 235, 236, 237, 238, 246, 248, 249, 255, 258, 265, 268, 269, 274, 277, 279, 292, 300, 302, 304, 305, 310, 311, 312, 329, 331, 340, 356, 364, 365, 429
Offset: 1
Keywords
Examples
133 is in the sequence since 2^3+5^3 = 1^3+1^3+1^3+1^3+1^3+4^3+4^3 = 1^3+2^3+2^3+2^3+3^3+3^3+3^3+3^3 = 1^3+1^3+1^3+1^3+1^3+1^3+1^3+1^3+5^3 = 1^3+1^3+2^3+2^3+2^3+2^3+2^3+3^3+4^3.
Links
- Eric Weisstein's World of Mathematics, Waring's Problem.
- Wikipedia, Waring's Problem.
- Index entries for sequences related to sums of cubes.
Programs
-
PARI
upto(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0
x==5, v, 1) \\ David A. Corneth, Dec 23 2024
Comments