cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Felice Russo

Felice Russo's wiki page.

Felice Russo has authored 288 sequences. Here are the ten most recent ones:

A256957 Smallest palindromic prime that generates a palindromic prime pyramid of height n.

Original entry on oeis.org

11, 131, 2, 5, 10301, 16361, 10281118201, 35605550653, 7159123219517, 17401539893510471, 3205657651567565023, 14736384418081448363741
Offset: 1

Author

Felice Russo, Jan 25 2000

Keywords

Comments

Start with a palindromic prime p; look for smallest palindromic prime that has previous term as a centered substring and has 2 more digits (i.e., one more digit at each end); repeat until no such palindromic prime can be found; then height(p) = number of rows in pyramid. Each row of pyramid must be the smallest prime that can be used. Then a(n) = smallest value of p that generates a pyramid of height n.

Examples

			a(1) = 11.
a(4) = 5:
5
151
31513
3315133, stop;
height(5)=4.
a(6)=16362:
16361
1163611
311636113
33116361133
3331163611333
333311636113333, stop;
height(16361)=6.
		

Crossrefs

Extensions

Added a(10)-a(11) and corrected a(4) - Chai Wah Wu, Apr 09 2015
Entry revised by N. J. A. Sloane, Apr 13 2015
a(12) from Michael S. Branicky, Oct 28 2024

A171765 a(n) = 0 if n <= 10; for n >= 11, a(n) = product of digits of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Author

Felice Russo, Oct 11 2010

Keywords

Crossrefs

Cf. A007954.

Programs

A134997 Number of dihedral primes with n digits.

Original entry on oeis.org

2, 1, 2, 2, 1, 14, 40, 52, 228, 482, 1592, 4758, 15810, 53202, 197429, 725196
Offset: 1

Author

Keywords

Crossrefs

Extensions

a(1) corrected by Patrick Capelle, Feb 06 2008
a(11)-a(16) from Hiroaki Yamanouchi, Sep 04 2014

A134998 Dihedral palindromic primes.

Original entry on oeis.org

2, 5, 11, 101, 181, 18181, 1008001, 1022201, 1055501, 1082801, 1085801, 1180811, 1208021, 1221221, 1250521, 1280821, 1508051, 1520251, 1551551, 1580851, 1802081, 1805081, 1880881, 1881881, 100111001, 100888001, 108101801
Offset: 1

Author

Keywords

Crossrefs

Extensions

5 added by Patrick Capelle, Feb 06 2008

A064156 Smallest prime with n decimal digits such that the product of its digits equals n times the sum of its digits, or 0 if no such prime exists.

Original entry on oeis.org

2, 0, 167, 1427, 0, 126241, 1111457, 12222241, 111113543, 0, 0, 111111118273, 0, 0, 111111111126581, 1111111111144841, 0, 111111111111126443, 0, 11111111111122225421, 111111111111111135781, 0, 0, 111111111111111111244561, 1111111111111111121255521, 0, 111111111111111111111113797
Offset: 1

Author

Felice Russo, Sep 14 2001

Keywords

Examples

			167 belongs to the sequence because this is the smallest prime with 3 digits such that 1*6*7=42 and 3*(1+6+7)=42
		

Programs

  • Mathematica
    NextPrim[ n_ ] := (k = n + 1; While[ ! PrimeQ[ k ], k++ ]; k); Do[ If[ n != 1 && Transpose[ FactorInteger[ n ] ][ [ 1, -1 ] ] <= 10, k = NextPrim[ (10^n - 1)/9 ];
    While[ d = IntegerDigits[ k ]; k < 10^n && n*Apply[ Plus, d ] != Apply[ Times, d ], k = NextPrim[ k ] ]; If[ k < 10^n, Print[ k ], Print[ 0 ] ], If[ n == 1, Print[ 2 ], Print[ 0 ] ] ], {n, 1, 9} ]

Extensions

Corrected and extended by Robert G. Wilson v, Oct 05 2001
a(14), a(20), a(25) and b-file from Max Alekseyev, May 07 2009

A067779 Primes such that the sum of the squares of its digits is equal to the product of its digits.

Original entry on oeis.org

11353, 13513, 15313, 15331, 31153, 31513, 31531, 33151, 35311, 51133, 53113, 1125221, 1212251, 1212521, 1221251, 1252211, 1512221, 2115221, 2122151, 2122511, 2151221, 2152211, 2215211, 2221511, 2251121, 2251211, 5122121
Offset: 1

Author

Felice Russo, Feb 06 2002

Keywords

Examples

			An eight-digit term is 11224121, a ten-digit term is 1111111843.
11353 belongs to the sequence because 1^2+1^2+3^2+5^2+3^2=45=1*1*3*5*3
		

Programs

  • PARI
    forprime(p=2,6e6, n=p; sd=0; pd=1; while(n>0,d=divrem(n,10); n=d[1]; sd=sd+d[2]*d[2]; pd=pd*d[2]); if(sd==pd,print1(p,",")))

Extensions

Edited and extended by Klaus Brockhaus Feb 11 2002

A063898 Smallest k > 0 such that k + F_n are all primes, where F_n is the n-th Fermat number.

Original entry on oeis.org

2, 2, 2, 14, 14, 14, 66746, 475424, 12124166, 14899339904
Offset: 0

Author

Felice Russo, Aug 29 2001

Keywords

Comments

Is this sequence finite?

Examples

			For j=3 a(3)=2 because 257+2, 17+2, 5+2, 3+2 are all primes.
For j=4 a(4)=14 because 65537+14, 257+14, 17+14, 5+14, 3+14 are all primes.
		

Crossrefs

Cf. A000215 (Fermat numbers).

Programs

  • PARI
    okprimep(mink, vecf) = {for (i=1, #vecf, if (! isprime(mink + vecf[i]), return (0));); return (1);}
    a(n) = {mink = 1; vecf = vector(n+1, i, 2^(2^(i-1)) + 1); while (! okprimep(mink, vecf), mink++); mink;} \\ Michel Marcus, Sep 28 2013

Extensions

a(10) from Donovan Johnson, Oct 12 2008

A064153 Values of n that are not solution of pr(x)=n where pr(x) is the prime partition function of x.

Original entry on oeis.org

8, 11, 13, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Author

Felice Russo, Sep 13 2001

Keywords

Crossrefs

Cf. A000607.

Extensions

More terms from Michel Marcus, Sep 28 2013

A072947 Primes in A053065.

Original entry on oeis.org

2, 191373251117, 37291913732511172331, 1391311131071018979716153433729191373251117233141475967738397103109127137149
Offset: 1

Author

Felice Russo, Aug 20 2002

Keywords

Comments

The next term is too large to include.

Crossrefs

Cf. A053065.

A073958 Fibonacci numbers for which the number of prime factors (with multiplicity) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 233, 377, 610, 987, 1597, 2584, 4181, 10946, 17711, 28657, 75025, 121393, 514229, 1346269, 3524578, 5702887, 9227465, 24157817, 39088169, 63245986, 165580141, 433494437
Offset: 1

Author

Felice Russo, Sep 03 2002

Keywords

Comments

The prime Fibonacci numbers, A005478, are a subsequence.

Examples

			Example: 8=2*2*2, the number of prime factors is equal to 3, a Fibonacci number.
		

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    With[{fibs=Fibonacci[Range[0,50]]},Rest[Select[fibs,MemberQ[fibs, PrimeOmega[#]]&]]] (* Harvey P. Dale, Oct 27 2011 *)
  • PARI
    isFibonacci(n)=my(k=n^2);k+=((k + 1) << 2);issquare(k) || (n > 0 && issquare(k-8))
    select(n->isFibonacci(bigomega(n)), vector(99,i,fibonacci(i+1))) \\ Charles R Greathouse IV, Jun 17 2013