cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046210 Erroneous version of A256957.

Original entry on oeis.org

11, 131, 2, 929, 10301, 16361, 10281118201, 35605550653, 7159123219517
Offset: 1

Views

Author

Keywords

A053600 a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.

Original entry on oeis.org

2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 20 2000

Keywords

Examples

			As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
		

References

  • G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.

Crossrefs

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
  • Python
    from gmpy2 import digits, mpz, is_prime
    A053600_list, p = [2], 2
    for _ in range(30):
        m, ps = 1, digits(p)
        s = mpz('1'+ps+'1')
        while not is_prime(s):
            m += 1
            ms = digits(m)
            s = mpz(ms+ps+ms[::-1])
        p = s
        A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015

A052205 a(n+1) is smallest palindromic prime containing exactly 3 more digits on each end than the previous term, with a(n) as a central substring.

Original entry on oeis.org

2, 1022201, 1051022201501, 1241051022201501421, 1071241051022201501421701, 1051071241051022201501421701501, 1091051071241051022201501421701501901, 1351091051071241051022201501421701501901531
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 28 2000

Keywords

Crossrefs

Extensions

Shown to be finite by Felice Russo

A034276 Smallest prime that generates a prime pyramid of height n.

Original entry on oeis.org

11, 29, 2, 5, 41, 251, 43, 145577, 51941, 4372877, 26901631, 366636187, 15387286403, 218761753811, 3313980408469
Offset: 1

Views

Author

Felice Russo, Jan 25 2000

Keywords

Comments

Let p be prime; look for the smallest prime in {1|p|1, 3|p|3, 7|p|7, 9|p|9}, where '|' stands for concatenation; repeat until no such prime can be found; then height(p) = number of rows in pyramid.
a(13) > 10^10. - Donovan Johnson, Aug 13 2010

Examples

			Example for p=43: 43 3433 334333 93343339 3933433393 939334333939 39393343339393, stop; height(43)=7.
		

Crossrefs

Extensions

More terms from Naohiro Nomoto, Jul 14 2001
a(11)-a(12) from Donovan Johnson, Aug 13 2010
a(13) from Chai Wah Wu, Apr 10 2015
a(14)-a(15) from Giovanni Resta, May 15 2020
Showing 1-4 of 4 results.