cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1912 results. Next

A238443 Duplicate of A174973.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 256, 260
Offset: 1

Views

Author

Omar E. Pol, Mar 06 2014

Keywords

A141158 Duplicate of A038872.

Original entry on oeis.org

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Original name was: Primes of the form x^2 + 4*x*y - y^2.
Discriminant = 20. Class number = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a,b,c) = 1 (primitive).
Values of the quadratic form are {0, 1, 4} mod 5, so this is a subsequence of A038872. - R. J. Mathar, Jul 30 2008
Is this the same sequence as A038872? [Yes. See a comment in A038872, and the comment by Jianing Song below. - Wolfdieter Lang, Jun 19 2019]
Also primes of the form u^2 - 5v^2. The transformation {u,v}={x+2y,y} transforms it into the one in the title. - Tito Piezas III, Dec 28 2008
From Jianing Song, Sep 20 2018: (Start)
Yes, this is a duplicate of A038872. For primes p congruent to {1, 4} mod 5, they split in the ring Z[(1+sqrt(5))/2]. Since Z[(1+sqrt(5))/2] is a UFD, they are reducible in Z[(1+sqrt(5))/2], so we have p = e*((a + b*sqrt(5))/2)*((a - b*sqrt(5))/2), where a and b have the same parity and e = +-1. WLOG we can suppose e = 1, otherwise substitute a, b by (a+5*b)/2 and (a+b)/2. Now we show that there exists integer u, v such that p = (u + v*sqrt(5))*(u - v*sqrt(5)) = u^2 - 5*v^2.
(i) If u, v are both even, then choose u = a/2, v = b/2.
(ii) If u, v are both odd, 4 | (a-b), then choose u = (3*a+5*b)/4, v = (3*b+a)/4.
(iii) If u, v are both odd, 4 | (a+b), then choose u = (3*a-5*b)/4, v = (3*b-a)/4.
Hence every prime congruent to {1, 4} mod 5 is of the form u^2 - 5*v^2. On the other hand, u^2 - 5*v^2 == 0, 1, 4 (mod 5). So these two sequences are the same.
Also primes of the form x^2 - x*y - y^2 (discriminant 5) with 0 <= x <= y (or x^2 + x*y - y^2 with x, y nonnegative). (End) [Comment revised by Jianing Song, Feb 24 2021]

Examples

			a(3) = 19 because we can write 19 = 2^2 + 4*2*5 - 5^2.
		

Programs

  • Mathematica
    lim = 25; Select[Union[Flatten[Table[x^2 + 4 x y - y^2, {x, 0, lim}, {y, 0, lim}]]], # > 0 && # < lim^2 && PrimeQ[#] &] (* T. D. Noe, Aug 31 2012 *)

A125878 Duplicate of A066674.

Original entry on oeis.org

3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Comments

Original name was: a(n) = the least number k such that cos(2pi/k) is an algebraic number of a prime(n)-smooth degree, but not prime(n-1)-smooth.
Comments from N. J. A. Sloane, Jan 07 2013: (Start)
This is a duplicate of A066674. This follows from the following argument. The degree of the minimal polynomial of cos(2*Pi/k) is phi(k)/2, where phi is Euler's totient function. Then a(n) is the least number k such that prime(n) is the largest prime dividing phi(k) and prime(n-1) does not divide phi(k)/2. For the rest of the proof see Bjorn Poonen's remarks in A066674.
It also seems likely that this is the same as A035095, but this is an open problem.
Conjecture: this sequence contains only primes (this would follow if this is indeed the same as A035095).
(End)

References

Crossrefs

Extensions

Edited by Don Reble, Apr 24 2007
Minor edits by Ray Chandler, Oct 20 2011

A144727 Erroneous version of A046972.

Original entry on oeis.org

11, 31, 151, 1051, 10501, 126001, 1764001, 26460001, 502740001, 10557540001, 274496040001, 7960385160001, 238811554800001, 9313650637200001, 381859676125200001, 21384141863011200001, 1325816795506694400001
Offset: 1

Views

Author

Keywords

A138335 Positions of digits after decimal point in decimal expansion of Pi where the approximation to Pi by a root of a quadratic polynomial does not improve the accuracy.

Original entry on oeis.org

19, 28, 29, 34, 36, 37, 39, 43, 50, 52, 62, 68, 71, 74, 75, 87, 89, 94, 110, 113, 128, 129, 130, 132, 137, 143, 153, 169, 174, 189, 201, 203, 207, 209, 211, 217, 240, 241, 242, 252, 253, 268, 274, 275, 278, 279, 284, 286, 287, 297
Offset: 1

Views

Author

Artur Jasinski, Mar 15 2008

Keywords

Comments

If there is a set of consecutive integers in this sequence starting at k, this means that k-1 is a good approximation to Pi.
If the set of successive integers is longer that approximation k-1 better (see A138336). [Sentence is not clear - N. J. A. Sloane, Dec 09 2017]
Comment from Joerg Arndt, Mar 17 2008: Does Mathematica's N[((quantity)), n] round a number (if so, to what base?) or truncate it? Is Mathematica's Recognize[] guaranteed to give the correct relation? I do not think so: that would be a major breakthrough. That is, this sequence may not even be well-defined.
This sequence is indeed ill defined. One can get the same approximation of Pi to a given precision with infinitely many distinct quadratic polynomials and any such polynomial that gives Pi to n+1 digits also gives Pi to n digits, so this sequence shouldn't have any term. Also, the 18-digit "root" given in the example isn't a root, the polynomial has a value of -5e-13 at this x-value. - M. F. Hasler, May 21 2025

Examples

			a(1)=19 because 3.141592653589793238 (18 digits) is root of -3061495 + 674903*x + 95366*x^2 and 3.1415926535897932385 (19 digits) also is root of that same polynomial -3061495 + 674903*x + 95366*x^2.
		

Programs

  • Mathematica
    << NumberTheory`Recognize`
    b = {}; a = {};
    Do[k = Recognize[N[Pi,n], 2, x]; If[MemberQ[a, k], AppendTo[b, n], AppendTo[a, k]], {n, 2, 300}]; b (* Artur Jasinski *)

A144726 Incorrect duplicate of A046966.

Original entry on oeis.org

2, 3, 5, 7, 10, 12, 14, 15, 19, 21, 26, 29, 30, 39, 41, 56, 62, 77, 96, 105, 112, 113, 115, 121, 136, 145, 159, 168, 188, 236, 240, 258, 281, 305, 324, 362, 376, 422, 521, 588, 639, 643, 652, 695, 698, 737, 770, 776, 784, 806, 807, 809, 818, 959, 1023, 1060, 1071
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Comments

Previous name was: a(n) is the smallest integer greater than a(n-1) such that a(1)*a(2)*...*a(n) + 1 is prime.

Crossrefs

Programs

  • Mathematica
    k = 5; a = {}; Do[If[PrimeQ[k n + 1], k = k n; AppendTo[a, n]], {n, 1, 3000}]; a

A073546 Triangle read by rows: row n gives denominators of n distinct unit fractions (or Egyptian fractions) summing to 1, where denominators are listed in increasing order and the largest denominator is smallest possible.

Original entry on oeis.org

2, 3, 6, 2, 4, 6, 12, 2, 4, 10, 12, 15, 3, 4, 6, 10, 12, 15, 3, 4, 9, 10, 12, 15, 18, 3, 5, 9, 10, 12, 15, 18, 20, 4, 5, 8, 9, 10, 15, 18, 20, 24, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 5, 6, 8, 9, 10, 15, 18, 20, 21, 24, 28, 6, 7, 8, 9, 10, 14, 15, 18, 20, 24, 28, 30
Offset: 3

Views

Author

Robert G. Wilson v, Aug 27 2002

Keywords

Comments

From Sean A. Irvine, Dec 05 2024: (Start)
For better versions of this sequence see A216993 and A378723.
This sequence is retained because of the terms given in the Brown link.
There can be more the one solution with the same smallest maximum denominator. For example, if n=8, we have:
1/3 + 1/5 + 1/9 + 1/10 + 1/12 + 1/15 + 1/18 + 1/20 = 1,
1/4 + 1/5 + 1/6 + 1/9 + 1/10 + 1/15 + 1/18 + 1/20 = 1.
The definition of this sequence does not specify which of these should be retained and various rows given here are not consistent in their selection. In A378723, the second solution is taken because 10 < 12 when reading the denominators from the right. In A216993, the first solution is taken because 3 < 4 when reading the denominators from the left. (End)

Examples

			n=3: 2,3,6;
n=4: 2,4,6,12;
n=5: 2,4,10,12,15;
n=6: 3,4,6,10,12,15;
...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 2nd Edition, page 161.

Extensions

Edited by Max Alekseyev, Mar 01 2018

A138336 First occurrence of exactly n consecutive numbers after A138335(n) (A138335(n) excluded).

Original entry on oeis.org

18, 27, 127, 1111
Offset: 1

Views

Author

Artur Jasinski, Mar 15 2008

Keywords

Comments

Such number digits after decimal point of number Pi where the approximation to the number Pi by a root of a polynomial of 2 degree does not improve the accuracy exactly n next digits.
It seems that sequence A138335, and therefore also this sequence, are ill defined. - M. F. Hasler, May 21 2025

Examples

			a(1)=18 because 3.141592653589793238 (18 digits) is root of -3061495 + 674903*x + 95366*x^2 and 3.1415926535897932385 (19 digits) also is root of that same polynomial -3061495 + 674903*x + 95366*x^2.
		

Crossrefs

Extensions

There are comments in the entry for A138335 which may cast doubt on the validity of this and related sequences. - N. J. A. Sloane, Mar 19 2008

A141159 Duplicate of A139492.

Original entry on oeis.org

7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jun 12 2008

Keywords

Comments

Name was: Primes of the form x^2 + 3*x*y - 3*y^2 (as well as of the form x^2 + 5*x*y + y^2).
Discriminant = 21. Class number = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac and gcd(a,b,c)=1 (primitive).
Primes of the form 6n+1 which cannot be expressed as 7k-1, 7k-2, or 7k-4. a(n)^2 == 1 (mod 24). - Gary Detlefs, Jan 26 2014
Besides 7 (which divides 21), primes of the form p == 1 (mod 3) and either == 1 or 2 or 4 (mod 7). For the other class, the primes represented by the principal form [3, 3, -1] (or primitive forms equivalent to this) are besides 3 (which divides 21), congruent to 2 (mod 3) and also to 3, 5, 6 (mod 7). For the primes of both classes see A038893. - Wolfdieter Lang, Jun 19 2019

Examples

			a(1)=7 because we can write 7 = 2^2 + 3*2*1 - 3*1^2 (or 7 = 1^2 + 5*1*1 + 1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Programs

  • Maple
    f:=n->7*ceil((6*n+1)/7)-(6*n+1):for n from 1 to 220 do if isprime(6*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(6*n+1) fi od. # Gary Detlefs, Jan 26 2014
  • Mathematica
    xy[{x_,y_}]:={x^2+3x y-3y^2,y^2+3x y -3x^2}; Union[Select[Flatten[xy/@ Subsets[ Range[50],{2}]],#>0&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 17 2013 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 3, -3])
    Q.represented_positives(1326, 'prime') # Peter Luschny, Jun 24 2019

Extensions

More terms from Harvey P. Dale, Feb 17 2013

A323841 Erroneous version of: Number of Stanley graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 158, 1330, 15414, 245578, 5382862
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).
It appears that there might be a missing number (26) in this data list. Only when the sequence is 1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862 does it then match with A323842 via exp(t)*EGF(A323842). - Michael D. Weiner, Sep 23 2019
For correct version of this sequence see A135922. - Alois P. Heinz, Sep 24 2019

Crossrefs

Showing 1-10 of 1912 results. Next