cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A030430 Primes of the form 10*n+1.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 881, 911, 941, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5*n+1 or equivalently 5*n+6.
Primes p such that the arithmetic mean of divisors of p^4 is an integer: A000203(p^4)/A000005(p^4) = C. - Ctibor O. Zizka, Sep 15 2008
Being a subset of A141158, this is also a subset of the primes of form x^2-5*y^2. - Tito Piezas III, Dec 28 2008
5 is quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Primes p such that 5 divides sigma(p^4), cf. A274397. - M. F. Hasler, Jul 10 2016

Crossrefs

Cf. A024912, A045453, A049511, A081759, A017281, A010051, A004615 (multiplicative closure).
Cf. A001583 (subsequence).
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009

Programs

  • Haskell
    a030430 n = a030430_list !! (n-1)
    a030430_list = filter ((== 1) . a010051) a017281_list
    -- Reinhard Zumkeller, Apr 16 2012
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 1 &] (* Ray Chandler, Dec 06 2006 *)
    Select[Range[11,1291,10],PrimeQ] (*Zak Seidov, Aug 14 2011*)
  • PARI
    is(n)=n%10==1 && isprime(n) \\ Charles R Greathouse IV, Sep 06 2012
    
  • PARI
    lista(nn) = forprime(p=11, nn, if(p%10==1, print1(p, ", "))) \\ Iain Fox, Dec 30 2017

Formula

a(n) = 10*A024912(n)+1 = 5*A081759(n)+6.
A104146(floor(a(n)/10)) = 1.
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009
a(n) ~ 4n log n. - Charles R Greathouse IV, Sep 06 2012
Intersection of A000040 and A017281. - Iain Fox, Dec 30 2017

A031363 Positive numbers of the form x^2 + xy - y^2; or, of the form 5x^2 - y^2.

Original entry on oeis.org

1, 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, 36, 41, 44, 45, 49, 55, 59, 61, 64, 71, 76, 79, 80, 81, 89, 95, 99, 100, 101, 109, 116, 121, 124, 125, 131, 139, 144, 145, 149, 151, 155, 164, 169, 171, 176, 179, 180, 181, 191, 196, 199, 205, 209, 211, 220, 225, 229, 236
Offset: 1

Views

Author

Keywords

Comments

5x^2 - y^2 has discriminant 20, x^2 + xy - y^2 has discriminant 5. - N. J. A. Sloane, May 30 2014
Representable as x^2 + 3xy + y^2 with 0 <= x <= y. - Benoit Cloitre, Nov 16 2003
Numbers k such that x^2 - 3xy + y^2 + k = 0 has integer solutions. - Colin Barker, Feb 04 2014
Numbers k such that x^2 - 7xy + y^2 + 9k = 0 has integer solutions. - Colin Barker, Feb 10 2014
Also positive numbers of the form x^2 - 5y^2. - Jon E. Schoenfield, Jun 03 2022

References

  • M. Baake, "Solution of coincidence problem ...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Numbers representable as x^2 + k*x*y + y^2 with 0 <= x <= y, for k=0..9: A001481(k=0), A003136(k=1), A000290(k=2), this sequence, A084916(k=4), A243172(k=5), A242663(k=6), A243174(k=7), A243188(k=8), A316621(k=9).
See A035187 for number of representations.
Primes in this sequence: A038872, also A141158.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
See also the related sequence A263849 based on a theorem of Maass.

Programs

  • Maple
    select(t -> nops([isolve(5*x^2-y^2=t)])>0, [$1..1000]); # Robert Israel, Jun 12 2014
  • Mathematica
    ok[n_] := Resolve[Exists[{x, y}, Element[x|y, Integers], n == 5*x^2-y^2]]; Select[Range[236], ok]
    (* or, for a large number of terms: *)
    max = 60755 (* max=60755 yields 10000 terms *); A031363 = {}; xm = 1;
    While[T = A031363; A031363 = Table[5*x^2 - y^2, {x, 1, xm}, {y, 0, Floor[ x*Sqrt[5]]}] // Flatten // Union // Select[#, # <= max&]&; A031363 != T, xm = 2*xm]; A031363  (* Jean-François Alcover, Mar 21 2011, updated Mar 17 2018 *)
  • PARI
    select(x -> x, direuler(p=2,101,1/(1-(kronecker(5,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020, after hints by Colin Barker, Jun 18 2014, and Michel Marcus
    
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2-z-1),n) \\ Ralf Stephan, Oct 18 2013
    
  • PARI
    seq(M,k=3) = { \\ assume k >= 0
    setintersect([1..M], setbinop((x,y)->x^2 + k*x*y + y^2, [0..1+sqrtint(M)]));
    };
    seq(236) \\ Gheorghe Coserea, Jul 29 2018
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A031363_gen(): # generator of terms
        return filter(lambda n:all(not((1 < p % 5 < 4) and e & 1) for p, e in factorint(n).items()),count(1))
    A031363_list = list(islice(A031363_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

Consists exactly of numbers in which primes == 2 or 3 mod 5 occur with even exponents.
Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m, p)+1)*p^(-s)+Kronecker(m, p)*p^(-2s))^(-1) for m = 5.

Extensions

More terms from Erich Friedman
b-file corrected and extended by Robert Israel, Jun 12 2014

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Views

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A154939 Primes p such that (p-1)*(p+1)-+p are primes.

Original entry on oeis.org

3, 5, 11, 31, 101, 131, 149, 181, 241, 331, 419, 449, 709, 1051, 1061, 1171, 1409, 1549, 1579, 1699, 1759, 1831, 2069, 3229, 3449, 3761, 3911, 4159, 4951, 5821, 6029, 6481, 6661, 6679, 6899, 7079, 7151, 7229, 7369, 8101, 8219, 8629, 8861, 9091, 9161, 9521
Offset: 1

Views

Author

Keywords

Comments

That is, primes p such that p^2+p-1 and p^2-p-1 are both primes: intersection of A053184 and A091567. - Michel Marcus, Jul 10 2016

Examples

			2*4=8-+3 -> primes, 4*6=24-+5 -> primes,...
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p^2+p-1) and IsPrime(p^2-p-1)]; // Vincenzo Librandi, Jul 10 2016
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]], And@@PrimeQ/@{#^2 - # - 1, #^2 + # - 1} &] (* Vincenzo Librandi, Jul 10 2016 *)
    Select[Prime[Range[1500]],AllTrue[(#-1)(#+1)+{#,-#},PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)

A155006 Primes p such that (p-2)*(p+2)-+2*p are primes.

Original entry on oeis.org

5, 7, 13, 23, 37, 43, 73, 167, 233, 263, 433, 557, 587, 593, 607, 727, 857, 1153, 1597, 1627, 1753, 2143, 2663, 2713, 3433, 3607, 3863, 3947, 4027, 4363, 4423, 4673, 5147, 5477, 5623, 5807, 5903, 6277, 7237, 7333, 7577, 8287, 8647, 8837, 8887, 9043, 10067
Offset: 1

Views

Author

Keywords

Comments

3*7-10=11, 3*7+10=31,...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]],AllTrue[(#-2)(#+2)+{2#,-2#},PrimeQ]&] (* Harvey P. Dale, Jan 01 2025 *)

A002381 Numbers of the form (p^2 - 1)/120 where p is 1 or prime.

Original entry on oeis.org

0, 1, 3, 7, 8, 14, 29, 31, 42, 52, 66, 85, 99, 143, 161, 185, 190, 267, 273, 304, 330, 371, 437, 476, 484, 525, 603, 612, 658, 806, 913, 1015, 1074, 1197, 1261, 1340, 1394, 1463, 1477, 1548, 1606, 1680, 1771, 1912, 2009, 2075, 2159, 2262, 2439, 2698, 2717
Offset: 1

Views

Author

Keywords

Comments

For n>1, primes p corresponding to a(n) are in A038872(n) = A045468(n-1) = A141158(n). - Ray Chandler, Jul 29 2019

References

  • H. Gupta, On a conjecture of Chowla, Proc. Indian Acad. Sci., 5A (1937), 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002382, A002855, A038872, A045468, A141158, subsequence of A093722.

Programs

  • Mathematica
    Join[{0},Select[Table[(p^2-1)/120,{p,Prime[Range[200]]}],IntegerQ]] (* Harvey P. Dale, Jan 14 2020 *)
  • PARI
    j=[]; for(n=0,150,x=prime(n)^2-1; if(Mod(x,120)==0,j=concat(j,(x/120)))); j

Extensions

More terms from Jason Earls, Jul 29 2001

A045453 Primes congruent to {0, 1} mod 5.

Original entry on oeis.org

5, 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 881, 911, 941, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231
Offset: 1

Views

Author

Keywords

Comments

Being a subset of A141158, this is also a subset of the primes of form x^2 - 5y^2. - Tito Piezas III, Dec 28 2008

Examples

			a(1) = 5 is the first primes that is congruent to 0 or 1, modulo 5.
a(2) = 11 is the first prime congruent to 1 modulo 5, and therefore (since there is no other prime congruent to 0 mod 5) the second term of this sequence.
a(10^k) = (181, 2791, 38201, 479771, 5803381, 67881871, 776580131, ...) for k = 1, 2, 3, ...
		

Crossrefs

Same as A030430 with addition of the only prime congruent to 0 (mod 5), a(1) = 5.
Cf. A000040.

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 5 in {0, 1} ]; // Vincenzo Librandi, Aug 13 2012
    
  • Mathematica
    Select[Prime@Range[210], MemberQ[{0, 1}, Mod[ #, 5]] &] (* Ray Chandler, Dec 06 2006 *)
  • PARI
    A045453_vec(Nmax)=select( p->p%5<2, primes([1,Nmax])) \\ or:
    A045453(n)=forprime(p=1,,p%5>1||n--||return(p)) \\ M. F. Hasler, Jan 15 2018

Formula

a(n) = A030430(n-1) for all n >= 2. - M. F. Hasler, Jan 15 2018

Extensions

Extended by Ray Chandler, Nov 28 2003
Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008
Edited and a(1000) double checked by M. F. Hasler, Jan 15 2018

A155007 Primes p such that (p-3)*(p+3)-+3*p are primes.

Original entry on oeis.org

7, 17, 37, 113, 157, 227, 283, 293, 313, 347, 443, 587, 787, 883, 1063, 1097, 1237, 1303, 1327, 1427, 1567, 1723, 1933, 1973, 2087, 2347, 2467, 2687, 2777, 3457, 3593, 4447, 4703, 4793, 4967, 5737, 5827, 6317, 6607, 6793, 6857, 8297, 8563, 8803, 9433
Offset: 1

Views

Author

Keywords

Comments

4*10-3*7=19, 4*10+3*7=61, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,7!}];lst

A045457 Primes congruent to {0, 4} mod 5.

Original entry on oeis.org

5, 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, 509, 569, 599, 619, 659, 709, 719, 739, 769, 809, 829, 839, 859, 919, 929, 1009, 1019, 1039, 1049, 1069, 1109, 1129, 1229, 1249, 1259, 1279
Offset: 1

Views

Author

Keywords

Comments

Being a subset of A141158, this is also a subset of the primes of form x^2 - 5*y^2. - Tito Piezas III, Dec 28 2008
Apparently primes p such that 5 | tau(p), where Ramanujan's tau is A000594. - Charles R Greathouse IV, Jul 08 2013

Crossrefs

Same as A030433 prefixed with 5.
Cf. A000040.

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 5 in {0, 4} ]; // Vincenzo Librandi, Aug 13 2012
    
  • Mathematica
    Select[Prime@Range[210], MemberQ[{0, 4}, Mod[ #, 5]] &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    is(n)=n==5 || (n%5==4 && isprime(n)) \\ Charles R Greathouse IV, Jul 08 2013

Extensions

Extended by Ray Chandler, Nov 07 2006

A141750 Primes of the form 4*x^2 + 3*x*y - 4*y^2 (as well as of the form 2*x^2 + 9*x*y + y^2).

Original entry on oeis.org

2, 3, 19, 23, 37, 41, 61, 67, 71, 73, 79, 89, 97, 109, 127, 137, 149, 173, 181, 211, 223, 227, 251, 257, 269, 283, 293, 311, 317, 347, 349, 353, 359, 367, 373, 383, 389, 397, 401, 419, 439, 457, 461, 463, 479, 487, 499, 503, 509, 523, 547, 557, 587, 593, 607
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 03 2008

Keywords

Comments

Discriminant = 73. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac.
Is this the same as A038957? - R. J. Mathar, Jul 04 2008. Answer: almost certainly - see the Tunnell notes in A033212. - N. J. A. Sloane, Oct 18 2014

Examples

			a(2) = 3 because we can write 3 = 4*1^2 + 3*1*1 - 4*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).
Showing 1-10 of 19 results. Next