cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A030430 Primes of the form 10*n+1.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 881, 911, 941, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5*n+1 or equivalently 5*n+6.
Primes p such that the arithmetic mean of divisors of p^4 is an integer: A000203(p^4)/A000005(p^4) = C. - Ctibor O. Zizka, Sep 15 2008
Being a subset of A141158, this is also a subset of the primes of form x^2-5*y^2. - Tito Piezas III, Dec 28 2008
5 is quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Primes p such that 5 divides sigma(p^4), cf. A274397. - M. F. Hasler, Jul 10 2016

Crossrefs

Cf. A024912, A045453, A049511, A081759, A017281, A010051, A004615 (multiplicative closure).
Cf. A001583 (subsequence).
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009

Programs

  • Haskell
    a030430 n = a030430_list !! (n-1)
    a030430_list = filter ((== 1) . a010051) a017281_list
    -- Reinhard Zumkeller, Apr 16 2012
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 1 &] (* Ray Chandler, Dec 06 2006 *)
    Select[Range[11,1291,10],PrimeQ] (*Zak Seidov, Aug 14 2011*)
  • PARI
    is(n)=n%10==1 && isprime(n) \\ Charles R Greathouse IV, Sep 06 2012
    
  • PARI
    lista(nn) = forprime(p=11, nn, if(p%10==1, print1(p, ", "))) \\ Iain Fox, Dec 30 2017

Formula

a(n) = 10*A024912(n)+1 = 5*A081759(n)+6.
A104146(floor(a(n)/10)) = 1.
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009
a(n) ~ 4n log n. - Charles R Greathouse IV, Sep 06 2012
Intersection of A000040 and A017281. - Iain Fox, Dec 30 2017

A066500 Numbers k such that 5 divides phi(k).

Original entry on oeis.org

11, 22, 25, 31, 33, 41, 44, 50, 55, 61, 62, 66, 71, 75, 77, 82, 88, 93, 99, 100, 101, 110, 121, 122, 123, 124, 125, 131, 132, 142, 143, 150, 151, 154, 155, 164, 165, 175, 176, 181, 183, 186, 187, 191, 198, 200, 202, 205, 209, 211, 213, 217, 220, 225, 231, 241
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Comments

Related to the equation x^5 == 1 (mod k): sequence gives values of k such there are solutions 1 < x < k of x^5 == 1 (mod k).
If k is a term of this sequence, then G = is a non-abelian group of order 5k, where 1 < r < n and r^5 == 1 (mod k). For example, G can be the subgroup of GL(2, Z_k) generated by x = {{1, 1}, {0, 1}} and y = {{r, 0}, {0, 1}}. - Jianing Song, Sep 17 2019
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, May 23 2022

Examples

			x^5 == 1 (mod 11) has solutions 1 < x < 11, namely {3,4,5,9}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], Divisible[EulerPhi[#], 5] &] (* Amiram Eldar, May 23 2022 *)
  • PARI
    isok(k) = { eulerphi(k)%5 == 0 } \\ Harry J. Smith, Feb 18 2010

Formula

a(n) are the numbers generated by 5^2 = 25 and all primes congruent to 1 mod 5 (A045453). Hence sequence gives all k such that k == 0 (mod A045453(n)) for some n > 1 or k == 0 (mod 25).

Extensions

Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Extended by Ray Chandler, Nov 06 2003

A108594 Numbers k such that 10*k + 101 is prime.

Original entry on oeis.org

0, 3, 5, 8, 9, 11, 14, 15, 17, 18, 21, 23, 30, 32, 33, 36, 39, 42, 44, 47, 50, 53, 54, 56, 59, 60, 65, 66, 71, 72, 78, 81, 84, 87, 89, 92, 93, 95, 96, 99, 105, 107, 108, 110, 113, 119, 120, 122, 126, 128, 135, 137, 138, 141, 143, 147, 150, 152, 162, 164, 170, 171, 173
Offset: 1

Views

Author

Parthasarathy Nambi, Jul 05 2005

Keywords

Examples

			If n=33 then 10*n + 101 = 431 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [0..300] | IsPrime(10*n+101)]; // G. C. Greubel, Oct 21 2023
    
  • Maple
    a:=proc(n) if isprime(10*n+101)=true then n else fi end: seq(a(n),n=0..200); # Emeric Deutsch, Jul 13 2005
  • Mathematica
    Select[Range[0,300], PrimeQ[10*# +101] &] (* G. C. Greubel, Oct 21 2023 *)
  • PARI
    is(n)=isprime(10*n+101) \\ Charles R Greathouse IV, Jun 13 2017
    
  • SageMath
    [n for n in (0..300) if is_prime(10*n+101)] # G. C. Greubel, Oct 21 2023

Extensions

More terms from Emeric Deutsch, Jul 13 2005
Showing 1-3 of 3 results.