cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002855 {m + n: m in A002382, n in A002381}.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 35, 37, 38, 40, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 60, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 77, 78, 79, 81, 84, 85, 86, 87, 88, 89, 91, 92, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Keywords

References

  • H. Gupta, On a conjecture of Chowla, Proc. Indian Acad. Sci., 5A (1937), 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Extended by Ray Chandler, Jul 31 2019

A093722 Integers of the form (k^2 - 1) / 120.

Original entry on oeis.org

0, 1, 3, 7, 8, 14, 20, 29, 31, 42, 52, 66, 69, 85, 99, 118, 122, 143, 161, 185, 190, 216, 238, 267, 273, 304, 330, 364, 371, 407, 437, 476, 484, 525, 559, 603, 612, 658, 696, 745, 755, 806, 848, 902, 913, 969, 1015, 1074, 1086, 1147, 1197, 1261, 1274, 1340
Offset: 1

Views

Author

Michael Somos, Apr 13 2004

Keywords

Comments

This is "one-fifteenth of triangular numbers (integers only)". - Vladimir Joseph Stephan Orlovsky, Mar 04 2009
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^n)/( (1 - q^(10*n-2))*(1 - q^(10*n-8)) ) = 1 - q - q^3 + q^7 + q^8 - q^14 - q^20 + + - - ... . - Peter Bala, Dec 26 2024

Crossrefs

Programs

  • Maple
    A093722 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(120*n+1), integer) then print(n);
    fi; od; end:
    A093722(1500); # Peter Bala, Dec 26 2024
  • Mathematica
    Select[Table[(n^2-1)/120,{n,0,700}],IntegerQ] (* Harvey P. Dale, Nov 26 2010 *)
  • PARI
    {a(n) = (((n\4 * 3 + n%4) * 10 + (-1)^(n\2))^2 - 1) / 120 } /* Michael Somos, Oct 17 2006 */

Formula

|A113430(n-1)| is the characteristic function of the numbers in A093722.
a(-1 - n) = a(n). a(n) = (A057538(n) * 2 - 1) / 120.
G.f.: -x^2*(1+2*x+4*x^2+x^3+4*x^4+x^6+2*x^5) / ( (1+x)^2*(x^2+1)^2*(x-1)^3 ). - R. J. Mathar, Jun 09 2013
From Peter Bala, Dec 26 2024: (Start)
a(n) is quasi-polynomial in n
a(4*n) = n*(15*n + 1)/2; a(4*n+1) = (3*n + 1)*(5*n + 2)/2;
a(4*n+2) = (3*n + 2)*(5*n + 3)/2; a(4*n+3) = (n + 1)*(15*n + 14)/2.
For 0 <= k <= 3, a(4*n+k) = (N_k(n)^2 - 1)/120, where N_0(n) = 30*n + 1, N_1(n) = 30*n + 11, N_2(n) = 30*n + 19 and N_3(n) = 30*n + 29. (End)

Extensions

More terms from Harvey P. Dale, Nov 26 2010
Offset corrected to 1 by Ray Chandler, Jul 29 2019

A002382 Numbers of the form (p^2 - 49)/120 where p is prime.

Original entry on oeis.org

0, 1, 2, 4, 11, 15, 18, 23, 37, 44, 57, 78, 88, 95, 106, 134, 156, 205, 221, 232, 249, 310, 323, 414, 429, 452, 550, 576, 639, 667, 715, 785, 816, 837, 946, 1003, 1038, 1122, 1159, 1222, 1313, 1562, 1635, 1740, 1786, 1817, 1976, 2108, 2279, 2493, 2585, 2641
Offset: 1

Views

Author

Keywords

Comments

Primes p corresponding to a(n) are found in A003631(n+2) = A042993(n+3) = A097957(n+1). - Ray Chandler, Jul 29 2019

References

  • H. Gupta, On a conjecture of Chowla, Proc. Indian Acad. Sci., 5A (1937), 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Select[(Prime[Range[150]]^2-49)/120,IntegerQ] (* Harvey P. Dale, Jan 19 2014 *)

Extensions

More terms from James Sellers, May 03 2000
Showing 1-3 of 3 results.