A385520 Expansion of Product_{k>0} ((1 - q^(2*k))*(1 - q^(6*k))^3)/((1 - q^k)*(1 - q^(3*k))*(1 - q^(4*k))*(1 - q^(12*k))).
1, 1, 1, 3, 4, 5, 6, 9, 13, 16, 20, 27, 36, 44, 54, 69, 88, 107, 130, 162, 200, 240, 288, 351, 426, 507, 602, 723, 864, 1019, 1200, 1422, 1681, 1968, 2300, 2700, 3160, 3674, 4266, 4965, 5768, 6665, 7692, 8892, 10260, 11792, 13536, 15552, 17844, 20407
Offset: 0
Keywords
Examples
For n = 4, the a(4) = 4 partitions are 4, 3+1, 2+2, and 1+1+1+1. Note that there is one other partition of 4 which is NOT counted by a(4); that is the partition 2+1+1. This partition is NOT counted by a(4) because the odd part 1 appears twice, and this is not allowed from the description given above.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Shane Chern, Dennis Eichhorn, Shishuo Fu, and James A. Sellers, Convolutive sequences, I: Through the lens of integer partition functions, arXiv:2507.10965 [math.CO], 2025. See pp. 4, 15.
Crossrefs
Cf. A293306.
Programs
-
Maple
p:=product((1-q^(2*k))*(1-q^(6*k))^3/((1-q^k)*(1-q^(3*k))*(1-q^(4*k))*(1-q^(12*k))), k=1..1000): s:=series(p,q,1000):
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k)) * (1 - x^(6*k))^3 / ((1 - x^k) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2025 *)
-
PARI
my(N=50,q='q+O('q^N)); Vec((eta(-q)*eta(-q^3))/eta(q^2)^2) \\ Joerg Arndt, Jul 02 2025
Formula
G.f.: Product_{k>0} ((1 - q^(2*k))*(1 - q^(6*k))^3)/((1 - q^k)*(1 - q^(3*k))*(1 - q^(4*k))*(1 - q^(12*k))).
G.f.: (eta(-q)*eta(-q^3))/eta(q^2)^2.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)). - Vaclav Kotesovec, Jul 02 2025
Comments