cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A112604 Number of representations of n as a sum of three times a square and two times a triangular number.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 1, 0, 0, 2, 0, 0, 3, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 0, 2, 0, 2, 1, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 4, 0, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Number of representations of 2n as a sum of three times a triangular number and a triangular number.

Examples

			a(12) = 3 since we can write 12 = 3(2)^2 + 0 = 3(-2)^2 + 0 = 0 + 2*6.
2*12 = 24 = 3*1+21 = 3*3+15 = 3*6+6 so a(12) = 3.
G.f. = 1 + x^2 + 2*x^3 + 2*x^5 + x^6 + 2*x^9 + 3*x^12 + 2*x^14 + 2*x^15 + ... - _Michael Somos_, Aug 11 2009
G.f. = q + q^9 + 2*q^13 + 2*q^21 + q^25 + 2*q^37 + 3*q^49 + 2*q^57 + 2*q^61 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

A112606(n) = a(2*n). 2 * A112607(n) = a(2*n + 1). A123884(n) = a(3*n). A112605(n) = a(3*n + 2). A131961(n) = a(6*n). A112608(n) =a(6*n + 2). 2 * A131963(n) = a(6*n + 3). 2 * A112609(n) = a(6*n + 5). - Michael Somos, Aug 11 2009

Programs

  • Mathematica
    a[n_] := DivisorSum[4n+1, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0]&]; Table[ a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    {a(n) = if(n<0, 0, n=4*n+1; sumdiv(n, d, (d%3==1) - (d%3==2)))};
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^6+A)^5 / eta(x^2+A)*(eta(x^4+A) / eta(x^3+A) / eta(x^12+A))^2, n))}; /* Michael Somos, Feb 14 2006 */

Formula

a(n) = A002324(4n+1) = A033762(2n) = d_{1, 3}(4n+1) - d_{2, 3}(4n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
From Michael Somos, Feb 14 2006: (Start)
Expansion of (psi(q)psi(q^3) + psi(-q)psi(-q^3))/2 in powers of q^2 where psi() is a Ramanujan theta function.
G.f.: (Sum_{k} x^k^2)^3*(Sum_{k>0} x^((k^2-k)/2))^2 = Product_{k>0} (1-x^(4k))(1-x^(6k))(1+x^(2k))(1+x^(3k))^2/(1+x^(6k))^2.
Euler transform of period 12 sequence [0, 1, 2, -1, 0, -2, 0, -1, 2, 1, 0, -2, ...]. (End)
From Michael Somos, Aug 11 2009: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164272.
a(3*n + 1) = 0. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 24 2023

A112605 Number of representations of n as a sum of a square and six times a triangular number.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 2, 0, 0, 4, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 3, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 4, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(22) = 4 since we can write 22 = 4^2 + 6*1 = (-4)^2 + 6*1 = 2^2 + 6*3 = (-2)^2 + 6*3.
G.f. = 1 + 2*x + 2*x^4 + x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^15 + 2*x^16 + ... - _Michael Somos_, Aug 11 2009
G.f. = q^3 + 2*q^7 + 2*q^19 + q^27 + 2*q^31 + 2*q^39 + 2*q^43 + 2*q^63 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

A112608(n) = a(2*n). 2 * A112609(n) = a(2*n + 1). A112604(n) = a(3*n). 2 * A121361(n) = a(3*n + 1). A112606(n) = a(6*n). 2 * A131962(n) = a(6*n + 1). 2 * A112607(n) = a(6*n + 3). 2 * A131964(n) = a(6*n + 4). - Michael Somos, Aug 11 2009

Programs

  • Mathematica
    a[n_] := DivisorSum[4n+3, KroneckerSymbol[-3, #]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    {a(n) = if(n<0, 0, sumdiv(4*n+3, d, kronecker(-3, d)))}; /* Michael Somos, May 20 2006 */
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x*O(x^n); polcoeff( eta(x^2+A)^5*eta(x^12+A)^2 / eta(x+A)^2 / eta(x^4+A)^2 / eta(x^6+A), n))}; /* Michael Somos, May 20 2006 */

Formula

a(n) = d_{1, 3}(4n+3) - d_{2, 3}(4n+3) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-3/4)*eta(q^2)^5*eta(q^12)^2/(eta(q)^2*eta(q^4)^2*eta(q^6)) in powers of q. - Michael Somos, May 20 2006
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -2, 2, -1, 2, -3, 2, -2, ...]. - Michael Somos, May 20 2006
a(n)=A002324(4n+3). - Michael Somos, May 20 2006
Expansion of phi(q)*psi(q^6) in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, May 20 2006, Sep 29 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164273. - Michael Somos, Aug 11 2009
a(3*n + 2) = 0. - Michael Somos, Aug 11 2009

A093829 Expansion of q * psi(q^3)^3 / psi(q) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, 1, 0, -1, 2, -1, 1, 0, 0, 1, 2, -2, 0, 1, 0, -1, 2, 0, 2, 0, 0, -1, 1, -2, 1, 2, 0, 0, 2, -1, 0, 0, 0, 1, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 1, 3, -1, 0, 2, 0, -1, 0, -2, 2, 0, 0, 0, 2, -2, 2, 1, 0, 0, 2, 0, 0, 0, 0, -1, 2, -2, 1, 2, 0, -2, 2, 0, 1, 0, 0, 2, 0, -2, 0, 0, 0, 0, 4, 0, 2, 0, 0, -1, 2, -3, 0, 1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Apr 17 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 + q^4 - q^6 + 2*q^7 - q^8 + q^9 + q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(6), 1), 90) [2]; /* Michael Somos, Jul 02 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -2, 0, 2, -1, 0} [[ Mod[#, 6, 1]]] &]];
    QP = QPochhammer; s = (QP[q]*QP[q^6]^6)/(QP[q^2]^2*QP[q^3]^3) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=0, n, x^k * (1 - x^k)^2 / (1 + x^(2*k) + x^(4*k)), x * O(x^n)), n))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^6 / (eta(x^2 + A)^2 * eta(x^3 + A)^3), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d) - if( d%2==0, 2 * kronecker( -3, d/2) ) ))}; /* Michael Somos, May 29 2005 */
    
  • Sage
    ModularForms( Gamma1(6), 1, prec=90).1; # Michael Somos, Sep 27 2013
    

Formula

Expansion of (a(q) - a(q^2)) / 6 = c(q^2)^2 / (3 * c(q)) in powers of q where a(), c() are cubic AGM functions. - Michael Somos, Sep 06 2007
Expansion of (eta(q) * eta(q^6)^6) / (eta(q^2)^2 * eta(q^3)^3) in powers of q.
Euler transform of period 6 sequence [ -1, 1, 2, 1, -1, -2, ...].
Moebius transform is period 6 sequence [ 1, -2, 0, 2, -1, 0, ...] = A112300. - Michael Somos, Jul 16 2006
Multiplicative with a(p^e) = (-1)^e if p=2; a(p^e) = 1 if p=3; a(p^e) = 1+e if p == 1 (mod 6); a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 12^(-1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122859.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u + v)^2 - v * (v + w) * (v + 4*w).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2 * (u2 - u3 - 4*u6) - (u3 + u6) * (u1 - 3*u3 - 3*u6).
G.f.: Sum_{k>0} (x^k - 2 * x^(2*k) + 2 * x^(4*k) - x^(5*k)) / (1 - x^(6*k)) = x * Product_{k>0} ((1 - x^k) * (1 - x^(6*k))^6) / ((1 - x^(2*k))^2 * (1 - x^(3*k))^3).
a(n) = -(-1)^n * A113447(n). - Michael Somos, Jan 31 2015
a(2*n) = -a(n). a(3*n) = a(n). a(6*n + 5) = 0.
A035178(n) = |a(n)|. A033762(n) = a(2*n + 1). A033687(n) = a(3*n + 1).
a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(3)) = 0.302299894039... . - Amiram Eldar, Nov 21 2023

A112609 Number of representations of n as a sum of three times a triangular number and four times a triangular number.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(30) = 2 since we can write 30 = 3*10 + 4*0 = 3*6 + 4*3
q^7 + q^31 + q^39 + q^63 + q^79 + q^103 + q^111 + q^127 + q^151 + ...
		

References

  • M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Crossrefs

A131962(n) = a(3*n). A112607(n) = a(3*n+1). A128617(n) = a(4*n+3).
A112605(2*n+1) = 2 * a(n). A112607(3*n+1) = a(n). A033762(4*n+3) = 2 * a(n). A112604(6*n+5) = 2 * a(n). A002324(8*n+7) = a(n). A123484(24*n+21) = 2 * a(n).

Programs

  • Mathematica
    A112609[n_] := SeriesCoefficient[(QPochhammer[q^6]*QPochhammer[q^8])^2/
    (QPochhammer[q^3]*QPochhammer[q^4]), {q,0,n}]; Table[A112609[n], {n, 0, 50}] (* G. C. Greubel, Sep 25 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n=8*n+7; sumdiv(n, d, kronecker(-3, d))/2)} /* Michael Somos, Mar 10 2008 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^8 + A))^2 / (eta(x^3 + A) * eta(x^4 + A)), n))} /* Michael Somos, Mar 10 2008 */

Formula

a(n) = 1/2*( d_{1, 3}(8n+7) - d_{2, 3}(8n+7) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of phi(q^3) * psi(q^4) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 10 2008
Expansion of q^(-7/8) * (eta(q^6) * eta(q^8))^2 / (eta(q^3) * eta(q^4)) in powers of q. - Michael Somos, Mar 10 2008
Euler transform of period 24 sequence [ 0, 0, 1, 1, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 1, 1, 0, 0, -2, ...]. - Michael Somos, Mar 10 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138270.
a(3*n+2) = 0.

A035178 a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 0, 1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 1, 3, 1, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, 2, 0, 2, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, 1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + q^3 + q^4 + q^6 + 2*q^7 + q^8 + q^9 + q^12 + 2*q^13 + 2*q^14 + ...
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(6), 1), 88); B := (A[1] - 1) / 3 + A[2]; B; /* Michael Somos, Aug 04 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -12, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)] - 4) / 12, {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
    a[n_] := DivisorSum[n, KroneckerSymbol[-12, #]&]; Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d)))}; /* Michael Somos, Apr 18 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X))) [n])}; /* Michael Somos, Jun 24 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3) - 1) / 3, n))}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%6==5, 1-e%2, 1+e)))}; /* Michael Somos, Aug 04 2015 */
    

Formula

Moebius transform is period 6 sequence [ 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Feb 14 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - (u2 -u6) * (1 + 3*u6). - Michael Somos, May 29 2005
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -12, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -12, p) * p^-s)). - Michael Somos, Jun 24 2011
a(n) is multiplicative with a(p^e) = 1 if p=2 or p=3, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) = Sum_{k>=0} x^(6*k + 1) / (1 - x^(6*k + 1)) - x^(6*k + 5) / (1 - x^(6*k + 5)). - Michael Somos, Feb 14 2006
a(n) = |A093829(n)| = -(-1)^n * A137608(n) = a(2*n) = a(3*n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
From Michael Somos, Aug 11 2009: (Start)
3 * a(n) = A107760(n) unless n=0. a(2*n + 1) = A033762(n). a(3*n + 1) = A033687(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 7) = 2 * A112608(n). a(12*n + 1) A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n). (End)
Expansion of (psi(q)^3 / psi(q^3) - 1) / 3 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Aug 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 16 2023

Extensions

Definition edited by Michael Somos, Aug 11 2009

A123484 Expansion of eta(q)^2 * eta(q^6)^4 * eta(q^8) * eta(q^24) / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.

Original entry on oeis.org

1, -2, 1, 0, 0, -2, 2, 0, 1, 0, 0, 0, 2, -4, 0, 0, 0, -2, 2, 0, 2, 0, 0, 0, 1, -4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, 0, 3, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 2, -4, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 1, 0, 0, -4, 2, 0, 1, 0, 0, 0, 0, -4, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Sep 28 2006, Apr 04 2008

Keywords

Comments

Expansion of (a(q) - 2 * a(q^2) - a(q^4) + 2*a(q^8)) / 6 in powers of q where a() is a cubic AGM function.

Examples

			q - 2*q^2 + q^3 - 2*q^6 + 2*q^7 + q^9 + 2*q^13 - 4*q^14 - 2*q^18 + ...
		

Crossrefs

A033762(n) = a(2*n+1). A112604(n) = a(4*n+1). -2 * A033762(n) = a(4*n+2). A112605(n) = a(4*n+3). A097195(n) = a(6*n+1). A112606(n) = a(8*n+1). -2 * A112604(n) = a(8*n+2). A112608(n) = a(8*n+3). 2 * A112607(n) = a(8*n+5). -2 * A112605(n) = a(8*n+6). 2 * A112609(n) = a(8*n+7).
A123884(n) = a(12*n+1). 2 * A121361(n) = a(12*n+7). A131961(n) = a(24*n+1). 2 * A131962(n) = a(24*n+7). A112608(n) = a(24*n+9). 2 * A131963(n) = a(24*n+13). 2 * A131964(n) = a(24*n+19).

Programs

  • Mathematica
    QP = QPochhammer; s = QP[x]^2*QP[x^6]^4*QP[x^8]*(QP[x^24]/(QP[x^2]*QP[x^3]* QP[x^12])^2) + O[x]^105; CoefficientList[s, x] (* Jean-François Alcover, Nov 06 2015, adapted from PARI, updated Dec 06 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, if(d%2, 1, d/2%2*-2)*kronecker(-12, n/d)))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, -2*(e<2), if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^8 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))}

Formula

Euler transform of period 24 sequence [ -2, 0, 0, 0, -2, -2, -2, -1, 0, 0, -2, 0, -2, 0, 0, -1, -2, -2, -2, 0, 0, 0, -2, -2, ...].
Moebius transform is period 24 sequence [ 1, -3, 0, 2, -1, 0, 1, 0, 0, 3, -1, 0, 1, -3, 0, 0, -1, 0, 1, -2, 0, 3, -1, 0, ...].
a(n) is multiplicative with a(2) = -2, a(2^e) = 0 if e>1, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 12^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A136748.
G.f.: x * Product_{k>0} (1 -x^(6*k)) * (1 - x^k + x^(2*k))^2 * (1 - x^(8*k)) * (1 + x^(12*k)) / (1 + x^(6*k)).
a(4*n) = a(6*n + 4) = a(6*n + 5) = 0. a(3*n) = a(n).
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 22 2024

A107760 Expansion of eta(q^3) * eta(q^2)^6 / (eta(q)^3 * eta(q^6)^2) in powers of q.

Original entry on oeis.org

1, 3, 3, 3, 3, 0, 3, 6, 3, 3, 0, 0, 3, 6, 6, 0, 3, 0, 3, 6, 0, 6, 0, 0, 3, 3, 6, 3, 6, 0, 0, 6, 3, 0, 0, 0, 3, 6, 6, 6, 0, 0, 6, 6, 0, 0, 0, 0, 3, 9, 3, 0, 6, 0, 3, 0, 6, 6, 0, 0, 0, 6, 6, 6, 3, 0, 0, 6, 0, 0, 0, 0, 3, 6, 6, 3, 6, 0, 6, 6, 0, 3, 0, 0, 6, 0, 6, 0, 0, 0, 0, 12, 0, 6, 0, 0, 3, 6, 9, 0, 3, 0, 0, 6, 6
Offset: 0

Views

Author

Michael Somos, May 24 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*q + 3*q^2 + 3*q^3 + 3*q^4 + 3*q^6 + 6*q^7 + 3*q^8 + 3*q^9 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.42).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(6), 1), 88); A[1] + 3*A[2]; /* Michael Somos, Aug 04 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 3 Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^3 / (4 EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
    QP = QPochhammer; s = QP[q^3]*(QP[q^2]^6/(QP[q]^3*QP[q^6]^2)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X)))[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3), n))};
    
  • PARI
    {a(n) = if ( n<1, n==0, 3 * sumdiv( n, d, kronecker( -12, d)))};
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 3*A[1] # Michael Somos, Sep 27 2013
    

Formula

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u^2*w + 4 * v*w^2 - 4 * v^2*w - 2 * u*v*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - 3 * u6 * (u2 - u6).
Expansion of psi(q)^3 / psi(q^3) in powers of q where psi() is a Ramanujan theta function.
Expansion of (a(q) + a(q^2)) / 2 = b(q^2)^2 / b(q) in powers of q where a(), b() are cubic AGM theta functions. - Michael Somos, Aug 30 2008
Euler transform of period 6 sequence [ 3, -3, 2, -3, 3, -2, ...].
Moebius transform is period 6 sequence [ 3, 0, 0, 0, -3, 0, ...]. - Michael Somos, Aug 11 2009
a(n) = 3 * b(n) unless n=0 and b() is multiplicative with b(p^e) = 1 if p=2 or p=3; b(p^e) = 1+e if p == 1 (mod 6); b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6). - Michael Somos, Aug 11 2009
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (27/4)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123330. - Michael Somos, Aug 11 2009
G.f.: (Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k - 1)))^3 / (Product_{k>0} (1 - x^(6*k)) / (1 - x^(6*k - 3))). - Michael Somos, Aug 11 2009
a(n) = 3 * A035178(n) unless n=0. a(n) = (-1)^n * A132973. a(2*n) = a(3*n) = a(n). a(6*n + 5) = 0. a(2*n + 1) = 3 * A033762. a(3*n + 1) = 3 * A033687(n). a(4*n + 1) = 3 * A112604(n). a(4*n + 3) = 3 * A112605(n). a(6*n + 1) = 3 * A097195(n). Convolution inverse of A132979.
a(8*n + 1) = 3 * A112606(n). a(8*n + 3) = 3* A112608(n). a(8*n + 5) = 6 * A112607(n-1). a(8*n + 7) = 6 * A112609(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*sqrt(3)/2 = 2.720699... . - Amiram Eldar, Dec 28 2023

A122859 Expansion of phi(-q)^3 / phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 12, -6, -6, 0, 12, -12, 12, -6, 0, 0, -6, -12, 24, 0, -6, 0, 12, -12, 0, -12, 0, 0, 12, -6, 24, -6, -12, 0, 0, -12, 12, 0, 0, 0, -6, -12, 24, -12, 0, 0, 24, -12, 0, 0, 0, 0, -6, -18, 12, 0, -12, 0, 12, 0, 24, -12, 0, 0, 0, -12, 24, -12, -6, 0, 0, -12, 0, 0, 0, 0, 12, -12, 24, -6, -12, 0, 24, -12, 0, -6, 0, 0, -12, 0, 24
Offset: 0

Views

Author

Michael Somos, Sep 15 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 6*q + 12*q^2 - 6*q^3 - 6*q^4 + 12*q^6 - 12*q^7 + 12*q^8 - 6*q^9 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 84, Eq. (32.64).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^3 / EllipticTheta[ 4, 0, q^3], {q, 0, n}] (* Michael Somos, Sep 27 2013 *)
  • PARI
    {a(n)= if( n<1, n==0, 6 * sumdiv(n, d, (-1)^(n/d) * kronecker( -3, d)))}
    
  • PARI
    {a(n)= if( n<1, n==0, -6 * sumdiv(n, d, (2 + (-1)^d) * kronecker( -3, d)))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2), n))}
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] - 6 *A[1] # Michael Somos, Sep 27 2013

Formula

Expansion of 2*a(q^2) - a(q) = b(q)^2 / b(q^2) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q)^6 * eta(q^6) / (eta(q^2)^3 * eta(q^3)^2) in powers of q.
Euler transform of period 6 sequence [ -6, -3, -4, -3, -6, -2, ...].
Moebius transform is period 6 sequence [ -6, 18, 0, -18, 6, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v*(u+v)^2 - 2*u*w*(v+w).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1-u2-u3+u6) * (u1+2*u2+u3) - (2*u1+u2-2*u3-u6) * (u1+2*u2-u3).
G.f.: Product_{k>0} (1 + x^(3*k)) / (1 + x^k)^3 * (1 - x^k)^3 / (1 - x^(3k)) = 1 + 6 * Sum_{k>0} (-1)^k * x^k / (1 + x^k + x^(2*k)).
G.f.: 1 - 6 * (Sum_{k>0} x^(3*k - 2) / (1 + x^(3*k - 2)) - x(3*k - 1)
/ (1 + x^(3*k - 1))).
a(3*n) = a(4*n) = a(n). a(6*n + 5) = 0.
(-1)^n * a(n) = A113660(n). -6 * a(n) = A122860(n) if n>0.
a(2*n) = A227354(n). a(2*n + 1) = -6 * A033762(n). a(3*n + 1) = -6 * A033687(n). a(4*n + 1) = -6 * A112604(n). a(4*n + 3) = -6 * A112605(n). a(6*n + 1) = -6 * A097195(n). a(8*n + 1) = -6 * A112606(n). a(8*n + 3) = -6 * A112608(n). a(8*n + 5) = -12 * A112607(n-1). a(8*n + 7) = -12 * A112609(n). a(12*n + 1) = -6 * A123884(n). a(12*n + 7) = -12 * A121361(n). - Michael Somos, Sep 27 2013
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 0. - Amiram Eldar, Nov 23 2023

A113447 Expansion of i * theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, 2, 1, 1, 0, 0, -1, 2, 2, 0, -1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, -2, 0, 0, 2, 1, 0, 0, 0, -1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, -1, 3, 1, 0, -2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, -1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, -2, 0, 2, 2, 0, 1, 0, 0, -2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, -1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Michael Somos, Nov 02 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + q^2 + q^3 - q^4 + q^6 + 2*q^7 + q^8 + q^9 - q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(24), 1), 106); A[2] + A[3] + A[4] - A[5] + A[7] + 2*A[8] + A[9] + A[10]; /* Michael Somos, May 07 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^max( 1, valuation( n, 2)) * sumdiv(n, d, kronecker( -12, d)))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, if( p==2, 1 + X / (1 + X), 1 / ((1 - X) * (1 - kronecker( -12, p) * X))))[n])};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^3), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 0, -2, -1, 0, 1, 2, 0, 0,-1][d%12 + 1]))}; /* Michael Somos, May 07 2015 */
    

Formula

Expansion of (eta(q^2) * eta(q^3)^3 * eta(q^12)^3) / (eta(q) * eta(q^4) * eta(q^6)^3) in powers of q.
Euler transform of period 12 sequence [1, 0, -2, 1, 1, 0, 1, 1, -2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0, ...].
a(n) is multiplicative and a(2^e) = -(-1)^e if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(6*k - 5) / (1 - x^(6*k - 5)) - x^(6*k - 1) / (1 - x^(6*k - 1)) - 2 * x^(12*k - 8) / (1 - x^(12*k - 8)) + 2 * x^(12*k - 4) / (1 - x^(12*k-4)).
G.f.: Sum_{k>0} x^k * (1 - x^(3*k))^2 / (1 + x^(4*k) + x^(8*k)).
G.f.: x * Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)) * ((1 - x^(12*k - 6)) / (1 - x^(3*k)))^3.
Expansion of theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.
Expansion of q * psi(-q^3)^3 / psi(-q) in powers of q where psi() is a Ramanujan theta function.
Expansion of (c(q) * c(q^4)) / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (4/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A132973.
a(n) = -(-1)^n * A093829(n). - Michael Somos, Jan 31 2015
Convolution inverse of A133637.
a(3*n) = a(n). a(6*n + 5) = a(12*n + 10) = 0. |a(n)| = A035178(n).
a(2*n) = A093829(n). a(2*n + 1) = A033762(n).
a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 6) = A112605(n). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A121963(n). a(24*n + 19) = 2 * A131964(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 23 2023

A129449 Expansion of psi(-x) * psi(-x^3) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -2, 1, 0, 2, 0, 0, -2, 2, 0, 1, -1, 0, -2, 0, 0, 2, -2, 0, -2, 0, 0, 3, 0, 0, 0, 2, 0, 2, -2, 0, -2, 0, 0, 2, -1, 0, -2, 1, 0, 0, 0, 0, -4, 2, 0, 2, 0, 0, -2, 0, 0, 2, -2, 0, 0, 2, 0, 1, 0, 0, -2, 2, 0, 4, 0, 0, -2, 0, 0, 0, -3, 0, -2, 0, 0, 2, 0, 0, -2, 0, 0, 3, -2, 0, -2, 0, 0, 2, -2, 0, 0, 2, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 53 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - x - 2*x^3 + x^4 + 2*x^6 - 2*x^9 + 2*x^10 + x^12 - x^13 - 2*x^15 + ...
G.f. = q - q^3 - 2*q^7 + q^9 + 2*q^13 - 2*q^19 + 2*q^21 + q^25 - q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)] / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := With[ {m = 2 n + 1}, If[ m < 1, 0, Sum[ KroneckerSymbol[ 12, d] KroneckerSymbol[ -4, m/d], {d, Divisors[ m]}]]]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -4, d) * kronecker( 12, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)/ (eta(x^2 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-1/2) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, -2, -1, -1, 0, -1, -1, -2, 0, -1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = (1 + (-1)^e) / 2 if p == 5, 11 (mod 12), b(p^e) = e+1 if p == 1 (mod 12), b(p^e) = (-1)^e * (e+1) if p == 7 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 48^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A033762(n). a(2*n) = A112604(n). a(2*n + 1) = -A112605(n). a(3*n) = A129451(n). a(3*n + 1) = -a(n). a(3*n + 2) = 0.
a(4*n) = A112606(n). a(4*n + 1) = - A112608(n). a(4*n + 2) = 2 * A112607(n). a(4*n + 3) = - 2 * A112609(n).
a(6*n) = A123884(n). a(6*n + 3) = -2 * A121361(n).
Showing 1-10 of 14 results. Next