cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A033762 Product t2(q^d); d | 3, where t2 = theta2(q) / (2 * q^(1/4)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 2, 0, 1, 1, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 4, 2, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Number of solutions of 8*n + 4 = x^2 + 3*y^2 in positive odd integers. - Michael Somos, Sep 18 2004
Half the number of integer solutions of 4*n + 2 = x^2 + y^2 + z^2 where 0 = x + y + z and x and y are odd. - Michael Somos, Jul 03 2011
Given g.f. A(x), then q^(1/2) * 2 * A(q) is denoted phi_1(z) where q = exp(Pi i z) in Conway and Sloane.
Half of theta series of planar hexagonal lattice (A2) with respect to an edge.
Bisection of A002324. Number of ways of writing n as a sum of a triangular plus three times a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + x + 2*x^3 + x^4 + 2*x^6 + 2*x^9 + 2*x^10 + x^12 + x^13 + 2*x^15 + ...
G.f. = q + q^3 + 2*q^7 + q^9 + 2*q^13 + 2*q^19 + 2*q^21 + q^25 + q^27 + 2*q^31 + ...
a(6) = 2 since 8*6 + 4 = 52 = 5^2 + 3*3^2 = 7^2 + 3*1^2.
		

References

  • Burce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 223 Entry 3(i).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 103. See Eq. (13).
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.27).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 202); A[2] + A[4]; /* Michael Somos, Jul 25 2014 */
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Jul 03 2011 *)
    QP = QPochhammer; s = (QP[q^2]*QP[q^6])^2/(QP[q]*QP[q^3]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# < 2, 0^#2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger@(2 n + 1))]; (* Michael Somos, Mar 06 2016 *)
    %t A033762 a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)], {x, 0, n}]; (* Michael Somos, Mar 06 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 18 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -12, d) * (n / d % 2)))}; /* Michael Somos, Nov 04 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 4; sum( j=1, sqrtint( n\3), (j%2) * issquare(n - 3*j^2)))} /* Michael Somos, Nov 04 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, sumdiv(2*n + 1, d, kronecker(-3, d)))}; /* Michael Somos, Mar 06 2016 */
    

Formula

Expansion of q^(-1/2) * (eta(q^2) * eta(q^6))^2 / (eta(q) * eta(q^3)) in powers of q. - Michael Somos, Apr 18 2004
Expansion of q^(-1) * (a(q) - a(q^4)) / 6 in powers of q^2 where a() is a cubic AGM theta function. - Michael Somos, Oct 24 2006
Expansion of psi(x) * psi(x^3) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jul 03 2011
Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, -2, ...]. - Michael Somos, Apr 18 2004
From Michael Somos, Sep 18 2004: (Start)
Given g.f. A(x), then B(x) = (x * A(x^2))^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 4*u*v*w + 16*v*w^2 - 8*w*v^2 - w*u^2.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p==5 (mod 6) otherwise b(p^e) = e+1. (Clarification: the g.f. A(x) is not the primary function of interest, but rather B(x) = x * A(x^2), which is an eta-quotient and is the generating function of a multiplicative sequence.)
G.f.: (Sum_{j>0} x^((j^2 - j) / 2)) * (Sum_{k>0} x^(3(k^2 - k) / 2)) = Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 + x^(3*k)) * (1 - x^(6*k)).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k * (1 - x^k) * (1 - x^(4*k)) * (1 - x^(5*k)) / (1 - x^(12*k)). (End)
G.f.: s(4)^2*s(12)^2/(s(2)*s(6)), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - x^(4*k) / (1 + x^(4*k) + x^(8*k)). - Michael Somos, Nov 04 2005
a(n) = A002324(2*n + 1) = A035178(2*n + 1) = A091393(2*n + 1) = A093829(2*n + 1) = A096936(2*n + 1) = A112298(2*n + 1) = A113447(2*n + 1) = A113661(2*n + 1) = A113974(2*n + 1) = A115979(2*n + 1) = A122860(2*n + 1) = A123331(2*n + 1) = A123484(2*n + 1) = A136748(2*n + 1) = A137608(2*n + 1). A005881(n) = 2*a(n).
6 * a(n) = A004016(6*n + 3). - Michael Somos, Mar 06 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 23 2023

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A112607 Number of representations of n as a sum of a triangular number and twelve times a triangular number.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(15) = 2 since we can write 15 = 15 + 12*0 = 3 + 12*1.
		

Crossrefs

A123484(24n+15) = 2*a(n). A112609(3n+4) = a(n).

Programs

  • Mathematica
    a[n_] := DivisorSum[8n+13, KroneckerSymbol[-3, #]&]/2; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<0, 0, n=8*n+13; sumdiv(n, d, kronecker(-3,d))/2)} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^24+A)^2/eta(x+A)/eta(x^12+A), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = 1/2*( d_{1, 3}(8n+13) - d_{2, 3}(8n+13) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-13/8)*(eta(q^2)*eta(q^24))^2/(eta(q)*eta(q^12)) in powers of q. - Michael Somos, Sep 29 2006
Expansion of psi(q)*psi(q^12) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Sep 29 2006
Euler transform of period 24 sequence [ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, ...]. - Michael Somos, Sep 29 2006
a(3n+2)=0. - Michael Somos, Sep 29 2006

A112609 Number of representations of n as a sum of three times a triangular number and four times a triangular number.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(30) = 2 since we can write 30 = 3*10 + 4*0 = 3*6 + 4*3
q^7 + q^31 + q^39 + q^63 + q^79 + q^103 + q^111 + q^127 + q^151 + ...
		

References

  • M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Crossrefs

A131962(n) = a(3*n). A112607(n) = a(3*n+1). A128617(n) = a(4*n+3).
A112605(2*n+1) = 2 * a(n). A112607(3*n+1) = a(n). A033762(4*n+3) = 2 * a(n). A112604(6*n+5) = 2 * a(n). A002324(8*n+7) = a(n). A123484(24*n+21) = 2 * a(n).

Programs

  • Mathematica
    A112609[n_] := SeriesCoefficient[(QPochhammer[q^6]*QPochhammer[q^8])^2/
    (QPochhammer[q^3]*QPochhammer[q^4]), {q,0,n}]; Table[A112609[n], {n, 0, 50}] (* G. C. Greubel, Sep 25 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n=8*n+7; sumdiv(n, d, kronecker(-3, d))/2)} /* Michael Somos, Mar 10 2008 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^8 + A))^2 / (eta(x^3 + A) * eta(x^4 + A)), n))} /* Michael Somos, Mar 10 2008 */

Formula

a(n) = 1/2*( d_{1, 3}(8n+7) - d_{2, 3}(8n+7) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of phi(q^3) * psi(q^4) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 10 2008
Expansion of q^(-7/8) * (eta(q^6) * eta(q^8))^2 / (eta(q^3) * eta(q^4)) in powers of q. - Michael Somos, Mar 10 2008
Euler transform of period 24 sequence [ 0, 0, 1, 1, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 1, 1, 0, 0, -2, ...]. - Michael Somos, Mar 10 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138270.
a(3*n+2) = 0.

A112606 Number of representations of n as a sum of six times a square and a triangular number.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 3, 2, 0, 2, 1, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 3, 0, 0, 2, 2, 0, 4, 1, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 2, 2, 0, 2, 3, 0, 2, 0, 0, 4, 2, 0, 0, 2, 0, 1, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 2, 4, 0, 4, 0, 0, 4, 0, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The greedy inverse starts 2, 0, 7, 6, 27, 300, 349, 14706, 216, 1035, 17107,... - R. J. Mathar, Apr 28 2020

Examples

			1 + x + x^3 + 3*x^6 + 2*x^7 + 2*x^9 + x^10 + 2*x^12 + x^15 + 2*x^16 + ...
q + q^9 + q^25 + 3*q^49 + 2*q^57 + 2*q^73 + q^81 + 2*q^97 + q^121 + 2*q^129 + ...
a(6) = 3 since we can write 6 = 6*1^2 + 0 = 6*(-1)^2 + 0 = 0 + 6.
		

References

  • M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Sum[ KroneckerSymbol[ -3, d], {d, Divisors[ 8 n + 1]}]] (* Michael Somos, Jun 16 2011 since V6 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ EllipticTheta[ 3, 0, q^6] EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)), {q, 0, n}]] (* Michael Somos, Jun 16 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 1; sumdiv(n, d, kronecker(-3, d)))} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^5 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^24 + A)^2), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = d_{1, 3}(8n+1) - d_{2, 3}(8n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-1/8) * eta(q^2)^2 * eta(q^12)^5 /(eta(q) * eta(q^6)^2 * eta(q^24)^2) in powers of q. - Michael Somos, Sep 29 2006
Expansion of phi(q^6) * psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 24 sequence [ 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -4, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -2, ...]. - Michael Somos, Sep 29 2006
G.f.: (Sum_{k} x^(6*k^2)) * (Sum_{k>0} x^((k^2-k)/2)). a(3*n+2)=0. - Michael Somos, Sep 29 2006
a(n) = A123484(24*n + 3) = A112604(2*n) = A112608(3*n). A131961(n) = a(3*n). A112608(n) = a(3*n + 1).

A131961 Expansion of f(x, x^2) * f(x^2, x^2) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 3, 2, 2, 1, 0, 3, 2, 4, 2, 0, 1, 2, 2, 3, 0, 2, 2, 2, 4, 0, 1, 4, 2, 2, 1, 0, 2, 0, 4, 0, 2, 4, 4, 1, 0, 4, 0, 2, 3, 0, 2, 2, 4, 0, 0, 2, 2, 0, 2, 3, 2, 4, 2, 2, 0, 3, 4, 4, 0, 0, 2, 0, 0, 4, 0, 2, 0, 2, 1, 0, 8, 2, 2, 2, 2, 3, 2, 4, 0, 0, 0, 2, 2, 4, 0
Offset: 0

Views

Author

Michael Somos, Aug 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 3*x^2 + 2*x^3 + 2*x^4 + x^5 + 3*x^7 + 2*x^8 + 4*x^9 + 2*x^10 + ...
G.f. = q + q^25 + 3*q^49 + 2*q^73 + 2*q^97 + q^121 + 3*q^169 + 2*q^193 + 4*q^217 + ...
		

Crossrefs

Cf. A123484.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 1}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &]]]; (* Michael Somos, Nov 06 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] EllipticTheta[ 3, 0, x^2] QPochhammer[ -x, x], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] QPochhammer[ -x, x^3] QPochhammer[ -x^2, x^3] QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 24*n + 1; sumdiv(n, d, kronecker( -12, d) * (n/d %2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^6 + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of phi(x^2) * phi(-x^3) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/24) * eta(q^3)^2 * eta(q^4)^5 / (eta(q) * eta(q^2) * eta(q^6) * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [ 1, 2, -1, -3, 1, 1, 1, -1, -1, 2, 1, -4, 1, 2, -1, -1, 1, 1, 1, -3, -1, 2, 1, -2, ...].
a(25*n + 1) = a(n). a(25*n + 6) = a(25*n + 11) = a(25*n + 16) = a(25*n + 21) = 0.
a(n) = A123484(24*n + 1).
Expansion of phi(-x^3) * f(x^2)^2 / psi(-x) in powers of x where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Nov 06 2015

A131963 Expansion of f(x, x^2) * f(x^4, x^12) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 2, 0, 0, 1, 0, 2, 1, 3, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 3, 0, 1, 0, 0, 1, 2, 2, 0, 1, 1, 2
Offset: 0

Views

Author

Michael Somos, Aug 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + x^9 + x^11 + 2*x^12 + x^13 + ...
G.f. = q^13 + q^37 + q^61 + q^109 + 2*q^133 + q^157 + q^181 + q^229 + q^277 + ...
		

Crossrefs

Cf. A123484.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 13}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 04 2015 *)
    a[ n_] := SeriesCoefficient[(1/2) x^(-1/2) EllipticTheta[ 4, 0, x^3] QPochhammer[ -x, x] EllipticTheta[ 2, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 04 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 24*n + 13; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of psi(x^4) * phi(-x^3) / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-13/24) * eta(q^2) * eta(q^3)^2 * eta(q^8)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, -1, 1, 1, -1, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, 1, -2, ...].
a(25*n + 13) = a(n). a(25*n + 3) = a(25*n + 8) = a(25*n + 18) = a(25*n + 23) = 0.
2 * a(n) = A123484(24*n + 13).

A131962 Expansion of psi(x) * phi(-x^12) / chi(-x^4) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 3, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 3, 1, 1, 2, 0, 0, 1, 2, 0, 0, 1, 1, 2, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Aug 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + 2*x^10 + x^11 + ...
G.f. = q^7 + q^31 + q^79 + q^103 + q^127 + q^151 + q^175 + q^199 + q^223 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 7}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 06 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^8] EllipticTheta[ 4, 0, x^12] QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 4, 0, x^12] QPochhammer[ -x^4, x^4], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 24*n + 7; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^24 + A)), n))};

Formula

Expansion of q^(-7/24) * eta(q^2)^2 * eta(q^8) * eta(q^12)^2/( eta(q) * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -2, ...].
a(25*n + 7) = a(n). a(25*n + 2) = a(25*n + 12) = a(25*n + 17) = a(25*n + 22) = 0.
2 * a(n) = A123484(24*n + 7).
Expansion of chi(x) * f(-x^8) * phi(-x^12) in powers of x where phi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 06 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 20 2025

A131964 Expansion of f(x^2, x^10) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 3, 0, 0, 0, 2, 1, 1, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 2, 1, 2, 0, 2, 2, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Michael Somos, Aug 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^5 + x^6 + x^8 + 2*x^10 + x^11 + x^12 + x^13 + ...
G.f. = q^19 + q^43 + q^67 + 2*q^91 + q^139 + q^163 + q^211 + 2*q^259 + q^283 + ...
		

Crossrefs

Cf. A123484.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 19}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 03 2015 *)
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) EllipticTheta[ 4, 0, x^4] QPochhammer[ -x, x] EllipticTheta[ 2, Pi/4, x^3], {x, 0, n}]; (* Michael Somos, Nov 03 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 24*n + 19; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)), n))};

Formula

Expansion of phi(-x^4) * psi(-x^6) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-19/24) * eta(q^2) * eta(q^4)^2 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 1, -2, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, 1, -2, ...].
a(25*n + 19) = a(n). a(25*n + 4) = a(25*n + 9) = a(25*n + 14) = a(25*n + 24) = 0.
2 * a(n) = A123484(24*n + 19).

A136748 Expansion of (a(q) - a(q^2) - 4*a(q^4) + 4*a(q^8)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, 1, -3, 0, -1, 2, 3, 1, 0, 0, -3, 2, -2, 0, -3, 0, -1, 2, 0, 2, 0, 0, 3, 1, -2, 1, -6, 0, 0, 2, 3, 0, 0, 0, -3, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, -3, 3, -1, 0, -6, 0, -1, 0, 6, 2, 0, 0, 0, 2, -2, 2, -3, 0, 0, 2, 0, 0, 0, 0, 3, 2, -2, 1, -6, 0, -2, 2, 0
Offset: 1

Views

Author

Michael Somos, Jan 22 2008

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 - 3*q^4 - q^6 + 2*q^7 + 3*q^8 + q^9 - 3*q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (Mod[#, 2] - 4 Boole[Mod[#, 8] == 4]) KroneckerSymbol[ -3, n/#] &]]; (* Michael Somos, Oct 12 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# == 1 || # == 3, 1, # == 2, If[#2 < 2, -1, -3 (-1)^#2], Mod[#, 6] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger@n)]; (* Michael Somos, Oct 12 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3+A) * eta(x^4 + A)^4 * eta(x^24 + A)^2 / ( eta(x^2 + A) * eta(x^8+A) * eta(x^12+A) )^2, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, if( e<2, -1, -3 * (-1)^e), p==3, 1, p%6>1, !(e%2), e+1)))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, ((d%2) -4 * (d%8==4)) * kronecker(-3, n/d)))};

Formula

Expansion of eta(q) * eta(q^3) * eta(q^4)^4 * eta(q^24)^2 / (eta(q^2) * eta(q^8) * eta(q^12))^2 in powers of q.
Euler transform of period 24 sequence [ -1, 1, -2, -3, -1, 0, -1, -1, -2, 1, -1, -2, -1, 1, -2, -1, -1, 0, -1, -3, -2, 1, -1, -2, ...].
a(n) is multiplicative with a(2) = -1, a(2^e) = -3 * (-1)^e if e>1, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 12^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123484.
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^2 * (1 + x^k + x^(2*k)) * (1 - x^(4*k) + x^(8*k))^2.
Moebius transform is period 24 sequence [ 1, -2, 0, -2, -1, 0, 1, 6, 2, -1, 0, 1, -2, 0, -6, -1, 0, 1, 2, 0, 2, -1, 0, ...].
a(2*n) = A244375(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n).
a(4*n) = -3 * A093829(n). a(4*n + 1) = A112604(n). a(4*n + 2) = -A033762(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
Expansion of q * f(-q, -q) * f(q^2, q^10) / f(-q, -q^5)^2 in powers of q where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 12 2015
Sum_{k=1..n} abs(a(k)) ~ (Pi*sqrt(3)/4) * n. - Amiram Eldar, Jan 28 2024
Showing 1-9 of 9 results.