cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A112604 Number of representations of n as a sum of three times a square and two times a triangular number.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 1, 0, 0, 2, 0, 0, 3, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 0, 2, 0, 2, 1, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 4, 0, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Number of representations of 2n as a sum of three times a triangular number and a triangular number.

Examples

			a(12) = 3 since we can write 12 = 3(2)^2 + 0 = 3(-2)^2 + 0 = 0 + 2*6.
2*12 = 24 = 3*1+21 = 3*3+15 = 3*6+6 so a(12) = 3.
G.f. = 1 + x^2 + 2*x^3 + 2*x^5 + x^6 + 2*x^9 + 3*x^12 + 2*x^14 + 2*x^15 + ... - _Michael Somos_, Aug 11 2009
G.f. = q + q^9 + 2*q^13 + 2*q^21 + q^25 + 2*q^37 + 3*q^49 + 2*q^57 + 2*q^61 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

A112606(n) = a(2*n). 2 * A112607(n) = a(2*n + 1). A123884(n) = a(3*n). A112605(n) = a(3*n + 2). A131961(n) = a(6*n). A112608(n) =a(6*n + 2). 2 * A131963(n) = a(6*n + 3). 2 * A112609(n) = a(6*n + 5). - Michael Somos, Aug 11 2009

Programs

  • Mathematica
    a[n_] := DivisorSum[4n+1, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0]&]; Table[ a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    {a(n) = if(n<0, 0, n=4*n+1; sumdiv(n, d, (d%3==1) - (d%3==2)))};
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^6+A)^5 / eta(x^2+A)*(eta(x^4+A) / eta(x^3+A) / eta(x^12+A))^2, n))}; /* Michael Somos, Feb 14 2006 */

Formula

a(n) = A002324(4n+1) = A033762(2n) = d_{1, 3}(4n+1) - d_{2, 3}(4n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
From Michael Somos, Feb 14 2006: (Start)
Expansion of (psi(q)psi(q^3) + psi(-q)psi(-q^3))/2 in powers of q^2 where psi() is a Ramanujan theta function.
G.f.: (Sum_{k} x^k^2)^3*(Sum_{k>0} x^((k^2-k)/2))^2 = Product_{k>0} (1-x^(4k))(1-x^(6k))(1+x^(2k))(1+x^(3k))^2/(1+x^(6k))^2.
Euler transform of period 12 sequence [0, 1, 2, -1, 0, -2, 0, -1, 2, 1, 0, -2, ...]. (End)
From Michael Somos, Aug 11 2009: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164272.
a(3*n + 1) = 0. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 24 2023

A123884 Expansion of phi(x) * phi(-x^6) / chi(-x^2) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 0, 2, 2, 1, 4, 0, 2, 3, 2, 2, 0, 4, 2, 2, 0, 0, 2, 1, 4, 2, 2, 2, 2, 3, 2, 0, 2, 2, 2, 2, 0, 2, 4, 4, 0, 0, 0, 1, 2, 4, 0, 2, 4, 2, 2, 1, 6, 0, 2, 2, 0, 0, 2, 4, 2, 0, 2, 2, 0, 4, 0, 4, 2, 1, 2, 0, 2, 4, 0, 0, 2, 2, 4, 3, 4, 0, 2, 2, 2, 2
Offset: 0

Views

Author

Michael Somos, Oct 17 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + ...
G.f. = q + 2*q^13 + q^25 + 2*q^37 + 3*q^49 + 2*q^61 + 2*q^73 + 2*q^97 + 2*q^109 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Oct 01 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2], {x, 0, n}]; (* Michael Somos, Oct 01 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(-1/12) * eta(q^2)^4 * eta(q^6)^2 / (eta(q)^2 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -2, ...].
a(n) = A093829(12*n + 1).
a(n) = (-1)^n * A248886(n). a(2*n) = A131961(n). a(2*n + 1) = 2 * A131963(n). - Michael Somos, Oct 01 2015

A112606 Number of representations of n as a sum of six times a square and a triangular number.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 3, 2, 0, 2, 1, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 3, 0, 0, 2, 2, 0, 4, 1, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 2, 2, 0, 2, 3, 0, 2, 0, 0, 4, 2, 0, 0, 2, 0, 1, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 2, 4, 0, 4, 0, 0, 4, 0, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The greedy inverse starts 2, 0, 7, 6, 27, 300, 349, 14706, 216, 1035, 17107,... - R. J. Mathar, Apr 28 2020

Examples

			1 + x + x^3 + 3*x^6 + 2*x^7 + 2*x^9 + x^10 + 2*x^12 + x^15 + 2*x^16 + ...
q + q^9 + q^25 + 3*q^49 + 2*q^57 + 2*q^73 + q^81 + 2*q^97 + q^121 + 2*q^129 + ...
a(6) = 3 since we can write 6 = 6*1^2 + 0 = 6*(-1)^2 + 0 = 0 + 6.
		

References

  • M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Sum[ KroneckerSymbol[ -3, d], {d, Divisors[ 8 n + 1]}]] (* Michael Somos, Jun 16 2011 since V6 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ EllipticTheta[ 3, 0, q^6] EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)), {q, 0, n}]] (* Michael Somos, Jun 16 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 1; sumdiv(n, d, kronecker(-3, d)))} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^5 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^24 + A)^2), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = d_{1, 3}(8n+1) - d_{2, 3}(8n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-1/8) * eta(q^2)^2 * eta(q^12)^5 /(eta(q) * eta(q^6)^2 * eta(q^24)^2) in powers of q. - Michael Somos, Sep 29 2006
Expansion of phi(q^6) * psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 24 sequence [ 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -4, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -2, ...]. - Michael Somos, Sep 29 2006
G.f.: (Sum_{k} x^(6*k^2)) * (Sum_{k>0} x^((k^2-k)/2)). a(3*n+2)=0. - Michael Somos, Sep 29 2006
a(n) = A123484(24*n + 3) = A112604(2*n) = A112608(3*n). A131961(n) = a(3*n). A112608(n) = a(3*n + 1).

A035178 a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 0, 1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 1, 3, 1, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, 2, 0, 2, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, 1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + q^3 + q^4 + q^6 + 2*q^7 + q^8 + q^9 + q^12 + 2*q^13 + 2*q^14 + ...
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(6), 1), 88); B := (A[1] - 1) / 3 + A[2]; B; /* Michael Somos, Aug 04 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -12, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)] - 4) / 12, {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
    a[n_] := DivisorSum[n, KroneckerSymbol[-12, #]&]; Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d)))}; /* Michael Somos, Apr 18 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X))) [n])}; /* Michael Somos, Jun 24 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3) - 1) / 3, n))}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%6==5, 1-e%2, 1+e)))}; /* Michael Somos, Aug 04 2015 */
    

Formula

Moebius transform is period 6 sequence [ 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Feb 14 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - (u2 -u6) * (1 + 3*u6). - Michael Somos, May 29 2005
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -12, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -12, p) * p^-s)). - Michael Somos, Jun 24 2011
a(n) is multiplicative with a(p^e) = 1 if p=2 or p=3, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) = Sum_{k>=0} x^(6*k + 1) / (1 - x^(6*k + 1)) - x^(6*k + 5) / (1 - x^(6*k + 5)). - Michael Somos, Feb 14 2006
a(n) = |A093829(n)| = -(-1)^n * A137608(n) = a(2*n) = a(3*n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
From Michael Somos, Aug 11 2009: (Start)
3 * a(n) = A107760(n) unless n=0. a(2*n + 1) = A033762(n). a(3*n + 1) = A033687(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 7) = 2 * A112608(n). a(12*n + 1) A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n). (End)
Expansion of (psi(q)^3 / psi(q^3) - 1) / 3 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Aug 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 16 2023

Extensions

Definition edited by Michael Somos, Aug 11 2009

A123484 Expansion of eta(q)^2 * eta(q^6)^4 * eta(q^8) * eta(q^24) / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.

Original entry on oeis.org

1, -2, 1, 0, 0, -2, 2, 0, 1, 0, 0, 0, 2, -4, 0, 0, 0, -2, 2, 0, 2, 0, 0, 0, 1, -4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, 0, 3, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 2, -4, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 1, 0, 0, -4, 2, 0, 1, 0, 0, 0, 0, -4, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Sep 28 2006, Apr 04 2008

Keywords

Comments

Expansion of (a(q) - 2 * a(q^2) - a(q^4) + 2*a(q^8)) / 6 in powers of q where a() is a cubic AGM function.

Examples

			q - 2*q^2 + q^3 - 2*q^6 + 2*q^7 + q^9 + 2*q^13 - 4*q^14 - 2*q^18 + ...
		

Crossrefs

A033762(n) = a(2*n+1). A112604(n) = a(4*n+1). -2 * A033762(n) = a(4*n+2). A112605(n) = a(4*n+3). A097195(n) = a(6*n+1). A112606(n) = a(8*n+1). -2 * A112604(n) = a(8*n+2). A112608(n) = a(8*n+3). 2 * A112607(n) = a(8*n+5). -2 * A112605(n) = a(8*n+6). 2 * A112609(n) = a(8*n+7).
A123884(n) = a(12*n+1). 2 * A121361(n) = a(12*n+7). A131961(n) = a(24*n+1). 2 * A131962(n) = a(24*n+7). A112608(n) = a(24*n+9). 2 * A131963(n) = a(24*n+13). 2 * A131964(n) = a(24*n+19).

Programs

  • Mathematica
    QP = QPochhammer; s = QP[x]^2*QP[x^6]^4*QP[x^8]*(QP[x^24]/(QP[x^2]*QP[x^3]* QP[x^12])^2) + O[x]^105; CoefficientList[s, x] (* Jean-François Alcover, Nov 06 2015, adapted from PARI, updated Dec 06 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, if(d%2, 1, d/2%2*-2)*kronecker(-12, n/d)))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, -2*(e<2), if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^8 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))}

Formula

Euler transform of period 24 sequence [ -2, 0, 0, 0, -2, -2, -2, -1, 0, 0, -2, 0, -2, 0, 0, -1, -2, -2, -2, 0, 0, 0, -2, -2, ...].
Moebius transform is period 24 sequence [ 1, -3, 0, 2, -1, 0, 1, 0, 0, 3, -1, 0, 1, -3, 0, 0, -1, 0, 1, -2, 0, 3, -1, 0, ...].
a(n) is multiplicative with a(2) = -2, a(2^e) = 0 if e>1, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 12^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A136748.
G.f.: x * Product_{k>0} (1 -x^(6*k)) * (1 - x^k + x^(2*k))^2 * (1 - x^(8*k)) * (1 + x^(12*k)) / (1 + x^(6*k)).
a(4*n) = a(6*n + 4) = a(6*n + 5) = 0. a(3*n) = a(n).
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 22 2024

A113447 Expansion of i * theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, 2, 1, 1, 0, 0, -1, 2, 2, 0, -1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, -2, 0, 0, 2, 1, 0, 0, 0, -1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, -1, 3, 1, 0, -2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, -1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, -2, 0, 2, 2, 0, 1, 0, 0, -2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, -1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Michael Somos, Nov 02 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + q^2 + q^3 - q^4 + q^6 + 2*q^7 + q^8 + q^9 - q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(24), 1), 106); A[2] + A[3] + A[4] - A[5] + A[7] + 2*A[8] + A[9] + A[10]; /* Michael Somos, May 07 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^max( 1, valuation( n, 2)) * sumdiv(n, d, kronecker( -12, d)))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, if( p==2, 1 + X / (1 + X), 1 / ((1 - X) * (1 - kronecker( -12, p) * X))))[n])};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^3), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 0, -2, -1, 0, 1, 2, 0, 0,-1][d%12 + 1]))}; /* Michael Somos, May 07 2015 */
    

Formula

Expansion of (eta(q^2) * eta(q^3)^3 * eta(q^12)^3) / (eta(q) * eta(q^4) * eta(q^6)^3) in powers of q.
Euler transform of period 12 sequence [1, 0, -2, 1, 1, 0, 1, 1, -2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0, ...].
a(n) is multiplicative and a(2^e) = -(-1)^e if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(6*k - 5) / (1 - x^(6*k - 5)) - x^(6*k - 1) / (1 - x^(6*k - 1)) - 2 * x^(12*k - 8) / (1 - x^(12*k - 8)) + 2 * x^(12*k - 4) / (1 - x^(12*k-4)).
G.f.: Sum_{k>0} x^k * (1 - x^(3*k))^2 / (1 + x^(4*k) + x^(8*k)).
G.f.: x * Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)) * ((1 - x^(12*k - 6)) / (1 - x^(3*k)))^3.
Expansion of theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.
Expansion of q * psi(-q^3)^3 / psi(-q) in powers of q where psi() is a Ramanujan theta function.
Expansion of (c(q) * c(q^4)) / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (4/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A132973.
a(n) = -(-1)^n * A093829(n). - Michael Somos, Jan 31 2015
Convolution inverse of A133637.
a(3*n) = a(n). a(6*n + 5) = a(12*n + 10) = 0. |a(n)| = A035178(n).
a(2*n) = A093829(n). a(2*n + 1) = A033762(n).
a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 6) = A112605(n). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A121963(n). a(24*n + 19) = 2 * A131964(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 23 2023

A137608 Expansion of (1 - psi(-q)^3 / psi(-q^3)) / 3 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 0, -1, 2, -1, 1, 0, 0, -1, 2, -2, 0, -1, 0, -1, 2, 0, 2, 0, 0, -1, 1, -2, 1, -2, 0, 0, 2, -1, 0, 0, 0, -1, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, -1, 3, -1, 0, -2, 0, -1, 0, -2, 2, 0, 0, 0, 2, -2, 2, -1, 0, 0, 2, 0, 0, 0, 0, -1, 2, -2, 1, -2, 0, -2, 2, 0, 1, 0, 0, -2, 0, -2, 0, 0, 0, 0, 4, 0, 2, 0, 0, -1, 2, -3, 0, -1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Jan 29 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 - q^4 - q^6 + 2*q^7 - q^8 + q^9 - q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[n, KroneckerSymbol[ -12, #] &]]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ (4 + EllipticTheta[ 2, Pi/4, q^(1/2)]^3 / EllipticTheta[ 2, Pi/4, q^(3/2)]) / 6, {q, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, May 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker(-12, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A))) / 3, n))}; /* Michael Somos, May 06 2015 */

Formula

Expansion of (1 - b(q^2)^2 / b(-q) ) / 3 in powers of q where b() is a cubic AGM function.
Moebius transform is period 12 sequence [ 1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 unless e=0, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (-1)^k * (x^k + x^(3*k)) / (1 + x^k + x^(2*k)).
G.f.: ( Sum_{k>0} x^(6*k-5) / ( 1 + x^(6*k-5) ) - x^(6*k-1) / ( 1 + x^(6*k-1) )).
a(n) = -(-1)^n * A035178(n). -3 * a(n) = A132973(n) unless n = 0.
a(2*n) = -A035178(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A227696(n).
a(4*n + 1) + A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n-1). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n).

A246650 Expansion of phi(x) * chi(-x) * psi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -2, 0, 2, -3, -2, 0, 1, 2, -2, 0, 2, 0, -2, 0, 3, 2, 0, 0, 2, -3, -2, 0, 2, 2, -2, 0, 0, 0, -4, 0, 2, 1, -2, 0, 2, -6, 0, 0, 1, 2, -2, 0, 4, 0, -2, 0, 0, 2, -2, 0, 2, 0, -2, 0, 3, 2, -2, 0, 2, 0, 0, 0, 2, 3, -2, 0, 0, -6, -2, 0, 4, 0, -2, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 31 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 + 2*x^4 - 3*x^5 - 2*x^6 + x^8 + 2*x^9 - 2*x^10 + ...
G.f. = q + q^4 - 2*q^7 + 2*q^13 - 3*q^16 - 2*q^19 + q^25 + 2*q^28 - ...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2), n))};

Formula

Expansion of q^(-1/3) * eta(q^2)^4 * eta(q^6)^2 / (eta(q) * eta(q^3) * eta(q^4)^2) in powers of q.
a(2*n) = A129451(n). a(4*n) = A123884(n). a(4*n + 1) = A122861(n). a(4*n + 2) = -2 * A121361(n). a(4*n + 3) = 0.
a(8*n) = A131961(n). a(8*n + 1) = A097195(n). a(8*n + 2) = -2 * A131962(n). a(8*n + 4) = 2 * A131963(n). a(8*n + 6) = -2 * A131964(n).
a(16*n + 1) = A123884(n). a(16*n + 5) = -3 * A033687(n). a(16*n + 9) = 2 * A121361(n). a(16*n + 13) = 0.

A248886 Expansion of f(-x, -x) * f(x^2, x^4) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -2, 1, -2, 3, -2, 2, 0, 2, -2, 1, -4, 0, -2, 3, -2, 2, 0, 4, -2, 2, 0, 0, -2, 1, -4, 2, -2, 2, -2, 3, -2, 0, -2, 2, -2, 2, 0, 2, -4, 4, 0, 0, 0, 1, -2, 4, 0, 2, -4, 2, -2, 1, -6, 0, -2, 2, 0, 0, -2, 4, -2, 0, -2, 2, 0, 4, 0, 4, -2, 1, -2, 0, -2, 4, 0, 0, -2
Offset: 0

Views

Author

Michael Somos, Oct 01 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 3*x^4 - 2*x^5 + 2*x^6 + 2*x^8 - 2*x^9 + ...
G.f. = q - 2*q^13 + q^25 - 2*q^37 + 3*q^49 - 2*q^61 + 2*q^73 + 2*q^97 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^2], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A)^2* eta(x^12 + A)), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q)^2*eta(q^4)*eta(q^6)^2/(eta(q^2)^2*eta(q^12))) \\ Altug Alkan, Jul 31 2018

Formula

Expansion of f(-x)^2 * phi(-x^6) / phi(-x^2) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of phi(-x) * phi(-x^6) / chi(-x^2) in powers of q where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/12) * eta(q)^2 * eta(q^4) * eta(q^6)^2 / (eta(q^2)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-2, 0, -2, -1, -2, -2, -2, -1, -2, 0, -2, -2, ...].
a(n) = (-1)^n * A123884(n). a(2*n) = A131961(n). a(2*n + 1) = -2 * A131963(n).

A260941 Expansion of phi(-x) * phi(x^6) / chi(-x^3) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 1, 0, 0, 3, -4, 0, 2, -2, 0, 2, 0, 0, 1, -4, 0, 0, 0, 0, 3, 0, 0, 2, -4, 0, 4, -2, 0, 2, 0, 0, 0, -8, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 2, -4, 0, 2, -6, 0, 2, 0, 0, 4, -4, 0, 0, -4, 0, 1, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 1, -4, 0, 0, -4
Offset: 0

Views

Author

Michael Somos, Aug 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^3 + 3*x^6 - 4*x^7 + 2*x^9 - 2*x^10 + 2*x^12 + x^15 + ...
G.f. = q - 2*q^9 + q^25 + 3*q^49 - 4*q^57 + 2*q^73 - 2*q^81 + 2*q^97 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^6] QPochhammer[ -x^3, x^3], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^12 + A)^5 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) * eta(x^24 + A)^2), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q)^2*eta(q^12)^5/(eta(q^2)*eta(q^3)*eta(q^6)*eta(q^24)^2)) \\ Altug Alkan, Aug 01 2018

Formula

Expansion of q^(-1/8) * eta(q)^2 * eta(q^12)^5 / (eta(q^2) * eta(q^3) * eta(q^6) * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ -2, -1, -1, -1, -2, 1, -2, -1, -1, -1, -2, -4, -2, -1, -1, -1, -2, 1, -2, -1, -1, -1, -2, -2, ...].
a(3*n) = A131961(n). a(3*n + 1) = -2 * A112608(n). a(3*n + 2) = 0.
Showing 1-10 of 11 results. Next