cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A205972 a(n) = Fibonacci(n)*A122859(n) for n>=1, with a(0)=1, where A122859 lists the coefficients in phi(-q)^3/phi(-q^3) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 12, -12, -18, 0, 96, -156, 252, -204, 0, 0, -864, -2796, 9048, 0, -5922, 0, 31008, -50172, 0, -131352, 0, 0, 556416, -450150, 2913432, -1178508, -3813732, 0, 0, -16155228, 26139708, 0, 0, 0, -89582112, -289893804, 938116056, -758951832, 0, 0, 6429943104
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare the g.f. to the Lambert series of A122859:
1 - 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1+x^n).

Examples

			G.f.: A(x) = 1 - 6*x + 12*x^2 - 12*x^3 - 18*x^4 + 96*x^6 - 156*x^7 +...
where A(x) = 1 - 1*6*x + 1*12*x^2 - 2*6*x^3 - 3*6*x^4 + 8*12*x^6 - 13*12*x^7 + 21*12*x^8 - 34*6*x^9 +...+ Fibonacci(n)*A122859(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 6*( 1*x/(1+x-x^2) - 1*x^2/(1+3*x^2+x^4) + 3*x^4/(1+7*x^4+x^8) - 5*x^5/(1+11*x^5-x^10) + 13*x^7/(1+29*x^7-x^14) - 21*x^8/(1+47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Cf. A209452 (Pell variant).

Programs

  • Mathematica
    A122859:= CoefficientList[Series[EllipticTheta[3, 0, -q]^3/EllipticTheta[3, 0, -q^3], {q, 0, 60}], q]; Table[If[n == 1, 1, Fibonacci[n - 1]*A122859[[n]]], {n, 1, 50}] (* G. C. Greubel, Dec 03 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 - 6*sum(m=1,n,fibonacci(m)*kronecker(m,3)*x^m/(1+Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 - 6*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*x^n/(1 + Lucas(n)*x^n + (-1)^n*x^(2*n)).

A209452 a(n) = Pell(n)*A122859(n) for n>=1, with a(0)=1, where A122859 lists the coefficients in phi(-q)^3/phi(-q^3) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 24, -30, -72, 0, 840, -2028, 4896, -5910, 0, 0, -83160, -401532, 1938768, 0, -2824992, 0, 32930520, -79501308, 0, -463367580, 0, 0, 6520076640, -7870428726, 76003583088, -45872220270, -221490672624, 0, 0, -3116610274188, 7524162792576, 0, 0, 0, -127800022137480
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare the g.f. to the Lambert series of A122859: 1 - 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1+x^n).

Examples

			G.f.: A(x) = 1 - 6*x + 24*x^2 - 30*x^3 - 72*x^4 + 840*x^6 - 2028*x^7 + ...
where A(x) = 1 - 1*6*x + 2*12*x^2 - 5*6*x^3 - 12*6*x^4 + 70*12*x^6 - 169*12*x^7 + 408*12*x^8 - 985*6*x^9 + ... + Pell(n)*A122859(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 - 6*( 1*x/(1+2*x-x^2) - 2*x^2/(1+6*x^2+x^4) + 12*x^4/(1+34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1+1154*x^8+x^16) + ...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A122859[n_]:= SeriesCoefficient[EllipticTheta[4, 0, q]^3/EllipticTheta[4, 0, q^3], {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A122859[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 6*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1+A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 - 6*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 + A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A093829 Expansion of q * psi(q^3)^3 / psi(q) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, 1, 0, -1, 2, -1, 1, 0, 0, 1, 2, -2, 0, 1, 0, -1, 2, 0, 2, 0, 0, -1, 1, -2, 1, 2, 0, 0, 2, -1, 0, 0, 0, 1, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 1, 3, -1, 0, 2, 0, -1, 0, -2, 2, 0, 0, 0, 2, -2, 2, 1, 0, 0, 2, 0, 0, 0, 0, -1, 2, -2, 1, 2, 0, -2, 2, 0, 1, 0, 0, 2, 0, -2, 0, 0, 0, 0, 4, 0, 2, 0, 0, -1, 2, -3, 0, 1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Apr 17 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 + q^4 - q^6 + 2*q^7 - q^8 + q^9 + q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(6), 1), 90) [2]; /* Michael Somos, Jul 02 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -2, 0, 2, -1, 0} [[ Mod[#, 6, 1]]] &]];
    QP = QPochhammer; s = (QP[q]*QP[q^6]^6)/(QP[q^2]^2*QP[q^3]^3) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=0, n, x^k * (1 - x^k)^2 / (1 + x^(2*k) + x^(4*k)), x * O(x^n)), n))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^6 / (eta(x^2 + A)^2 * eta(x^3 + A)^3), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d) - if( d%2==0, 2 * kronecker( -3, d/2) ) ))}; /* Michael Somos, May 29 2005 */
    
  • Sage
    ModularForms( Gamma1(6), 1, prec=90).1; # Michael Somos, Sep 27 2013
    

Formula

Expansion of (a(q) - a(q^2)) / 6 = c(q^2)^2 / (3 * c(q)) in powers of q where a(), c() are cubic AGM functions. - Michael Somos, Sep 06 2007
Expansion of (eta(q) * eta(q^6)^6) / (eta(q^2)^2 * eta(q^3)^3) in powers of q.
Euler transform of period 6 sequence [ -1, 1, 2, 1, -1, -2, ...].
Moebius transform is period 6 sequence [ 1, -2, 0, 2, -1, 0, ...] = A112300. - Michael Somos, Jul 16 2006
Multiplicative with a(p^e) = (-1)^e if p=2; a(p^e) = 1 if p=3; a(p^e) = 1+e if p == 1 (mod 6); a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 12^(-1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122859.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u + v)^2 - v * (v + w) * (v + 4*w).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2 * (u2 - u3 - 4*u6) - (u3 + u6) * (u1 - 3*u3 - 3*u6).
G.f.: Sum_{k>0} (x^k - 2 * x^(2*k) + 2 * x^(4*k) - x^(5*k)) / (1 - x^(6*k)) = x * Product_{k>0} ((1 - x^k) * (1 - x^(6*k))^6) / ((1 - x^(2*k))^2 * (1 - x^(3*k))^3).
a(n) = -(-1)^n * A113447(n). - Michael Somos, Jan 31 2015
a(2*n) = -a(n). a(3*n) = a(n). a(6*n + 5) = 0.
A035178(n) = |a(n)|. A033762(n) = a(2*n + 1). A033687(n) = a(3*n + 1).
a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(3)) = 0.302299894039... . - Amiram Eldar, Nov 21 2023

A229616 Expansion of (phi(-q)^3 / phi(-q^3))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -12, 60, -156, 204, -72, -84, -96, 492, -588, 360, -144, 60, -168, 480, -936, 1068, -216, -516, -240, 1224, -1248, 720, -288, 348, -372, 840, -1884, 1632, -360, -504, -384, 2220, -1872, 1080, -576, -372, -456, 1200, -2184, 2952, -504, -672, -528, 2448
Offset: 0

Views

Author

Michael Somos, Sep 26 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 12*q + 60*q^2 - 156*q^3 + 204*q^4 - 72*q^5 - 84*q^6 - 96*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] - 12*A[2] + 60*A[3];
  • Mathematica
    a[ n_] := If[n < 1, Boole[ n == 0], -12 Sum[ {1, -7, 10, -7, 1, 2}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
    a[ n_] := If[n < 1, Boole[ n == 0], -12 Sum[ {1, -3, 4, -3, 1, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^6 / EllipticTheta[ 4, 0, q^3]^2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, n/d * [2, 1, -7, 10, -7, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, d * [0, 1, -3, 4, -3, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^6 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2))^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=50).basis(); A[0] - 12*A[1] + 60*A[2];
    

Formula

Expansion of (2*a(q^2) - a(q))^2 = b(q)^4 / b(q^2)^2 in powers of q where a(), b() are cubic AGM theta functions.
Expansion of (eta(q)^6 * eta(q^6) / (eta(q^2)^3 * eta(q^3)^2))^2 in powers of q.
Euler transform of period 6 sequence [-12, -6, -8, -6, -12, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 432 (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229615.
G.f.: ( Product_{k>0} (1 + x^(3*k)) * (1 - x^k)^3 / ((1 + x^k)^3 * (1 - x^(3*k))))^2.
Convolution square of A122859.
Conjecture: -3 A122858(n) - A229616(n) + 4 A282031(n) = 0 for all n. - Thomas Baruchel, Jun 23 2018

A122860 Expansion of (1 - phi(-q)^3 / phi(-q^3)) / 6 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, 1, 0, -2, 2, -2, 1, 0, 0, 1, 2, -4, 0, 1, 0, -2, 2, 0, 2, 0, 0, -2, 1, -4, 1, 2, 0, 0, 2, -2, 0, 0, 0, 1, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, 1, 3, -2, 0, 2, 0, -2, 0, -4, 2, 0, 0, 0, 2, -4, 2, 1, 0, 0, 2, 0, 0, 0, 0, -2, 2, -4, 1, 2, 0, -4, 2, 0, 1
Offset: 1

Views

Author

Michael Somos, Sep 15 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - 2*q^2 + q^3 + q^4 - 2*q^6 + 2*q^7 - 2*q^8 + q^9 + q^12 + 2*q^13 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 84, Eq. (32.64).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -DivisorSum[ n, (-1)^(n/#) JacobiSymbol[ -3, #] &]]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^(n/d) * kronecker(-3, d)))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (2+(-1)^d) * kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^6 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2)) / 6, n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, if(p==2, (1 - 2*X) / (1 - X^2), 1 / ((1-X) * (1 - kronecker(-3, p)*X))))[n])};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, (3*(-1)^e - 1) / 2, p==3, 1, p%6==1, e+1, 1-e%2 )))};

Formula

Expansion of (1 + a(q) - 2*a(q^2)) / 6 = (1 - b(q)^2 / b(q^2)) / 6 in powers of q where a(), b() are cubic AGM theta functions.
Expansion of (1 - eta(q)^6 * eta(q^6) / (eta(q^2)^3 * eta(q^3)^2)) / 6 in powers of q.
Moebius transform is period 6 sequence [ 1, -3, 0, 3, -1, 0, ...].
a(n) is multiplicative and a(2^e) = (3(-1)^e-1)/2, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
a(3*n) = a(4*n) = a(n). a(6*n + 5) = 0.
G.f.: (1 - Product_{k>0} (1 + x^(3k)) / (1 + x^k)^3 * (1 - x^k)^3 / (1 - x^(3*k))) / 6 = Sum_{k>0} -(-x)^k / (1 + x^k + x^(2*k)).
G.f.: Sum_{k>0} x^(3*k-2) / (1 + x^(3*k-2)) - x^(3*k-1) / (1 + x^(3*k-1)).
-6 * a(n) = A122859(n) unless n=0. -(-1)^n * a(n) = A113661(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 0. - Amiram Eldar, Nov 23 2023

A227354 Expansion of 2 * a(q) - a(q^2) in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 12, -6, 12, 12, 0, -6, 24, -6, 12, 0, 0, 12, 24, -12, 0, 12, 0, -6, 24, 0, 24, 0, 0, -6, 12, -12, 12, 24, 0, 0, 24, -6, 0, 0, 0, 12, 24, -12, 24, 0, 0, -12, 24, 0, 0, 0, 0, 12, 36, -6, 0, 24, 0, -6, 0, -12, 24, 0, 0, 0, 24, -12, 24, 12, 0, 0, 24, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 08 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 12*q - 6*q^2 + 12*q^3 + 12*q^4 - 6*q^6 + 24*q^7 - 6*q^8 + 12*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^2]^3 / EllipticTheta[ 4, 0, q^6] + 3 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 6 Sum[ JacobiSymbol[ d, 3] (Mod[ n/d, 2] + 1), {d, Divisors@n}]]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 12 * sumdiv( n, d, kronecker( d, 3)) - 6 * sumdiv( 2*n, d, kronecker( d, 3)))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 12 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, (1 + 3*(-1)^e) / 4, if( p == 3, 1, if( p%6 == 1, e+1, (1 + (-1)^e) / 2 ))))))};

Formula

Expansion of (4 * b(q^4)^2 - 2 * b(q) * b(q^4) - b(q)^2) / b(q^2) in powers of q where b() is a cubic AGM theta function.
Expansion of phi(-q^2)^3 / phi(-q^6) + 12 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jan 09 2015
Expansion of theta_4(q^2)^3 / theta_4(q^6) + 3 * theta_2(q) * theta_2(q^3) in powers of q.
Moebius transform is period 6 sequence [ 12, -18, 0, 18, -12, 0, ...].
a(n) = 12 * b(n) where b(n) is multiplicative with b(2^e) = (1 + 3*(-1)^e) / 4, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
a(n) = A122859(8*n). a(2*n) = A122859(n). a(2*n + 1) = 12 * A033762(n). a(4*n) = a(n). a(4*n + 1) = 12 * A112604(n). a(4*n + 2) = -6 * A033762(n). a(4*n + 3) = 12 * A112605(n).
G.f.: 1 + 6 * Sum_{k>0} ((k mod 2) + 1) * x^k / (1 + x^k + x^(2*k)). - Michael Somos, Jan 09 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*sqrt(3) = 5.441398... (A304656). - Amiram Eldar, Nov 23 2023

A259662 Expansion of phi(-q^3) / phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 24, 78, 222, 576, 1392, 3180, 6936, 14550, 29520, 58176, 111750, 209820, 385968, 696960, 1237470, 2163456, 3728904, 6343068, 10658880, 17708412, 29108880, 47373696, 76378992, 122058870, 193435248, 304134558, 474609180, 735374016, 1131698448, 1730375436
Offset: 0

Views

Author

Michael Somos, Jul 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 6*x + 24*x^2 + 78*x^3 + 222*x^4 + 576*x^5 + 1392*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / EllipticTheta[ 4, 0, x]^3, {x, 0, n}];
    nmax=60; CoefficientList[Series[Product[(1+x^k)^3 * (1-x^(3*k)) / ((1+x^(3*k)) * (1-x^k)^3),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 / (eta(x + A)^6 * eta(x^6 + A)), n))};

Formula

Expansion of 1 / (2*a(q^2) - a(q)) = b(q^2) / b(q)^2 in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^3 * eta(q^3)^2 / (eta(q)^6 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 6, 3, 4, 3, 6, 2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w^2*(u + v)^2 - 2*u*v^2*(v+w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 432^(-1/2) (t/I)^-1 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A258093.
G.f.: Product_{k>0} (1 + x^k)^3 * (1 - x^(3*k)) / ((1 + x^(3*k)) * (1 - x^k)^3).
a(n) = A132974(2*n) = A132979(2*n).
Convolution inverse of A122859.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(5/4) * n^(5/4)). - Vaclav Kotesovec, Oct 14 2015
Showing 1-7 of 7 results.