A203847
a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.
Original entry on oeis.org
1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
-
Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
-
{a(n)=sigma(n,0)*fibonacci(n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
-
a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018
A205971
a(n) = Fibonacci(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
Original entry on oeis.org
1, 4, 4, 8, 60, 120, 32, 416, 1092, 136, 1320, 4272, 2880, 13048, 12064, 14640, 114492, 114984, 10336, 334480, 811800, 350272, 850128, 2751072, 2411136, 9303100, 6798008, 785672, 50849760, 61707480, 19968960, 172322432, 531507396, 169179744, 410607864
Offset: 0
G.f.: A(x) = 1 + 4*x + 4*x^2 + 8*x^3 + 60*x^4 + 120*x^5 + 32*x^6 + ...
where A(x) = 1 + 1*4*x + 1*4*x^2 + 2*4*x^3 + 3*20*x^4 + 5*24*x^5 + 8*4*x^6 + ... + Fibonacci(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1+11*x^5-x^10) + 13*7*x^7/(1+29*x^7-x^14) + 21*8*x^8/(1-47*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
-
A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1 + 4*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
for(n=0,61,print1(a(n),", "))
A205973
a(n) = Fibonacci(n)*A109041(n) for n>=1, with a(0)=1, where A109041 lists the coefficients in eta(q)^9/eta(q^3)^3.
Original entry on oeis.org
1, -9, 27, -18, -351, 1080, 216, -5850, 9639, -306, -35640, 96120, -16848, -356490, 508950, 131760, -1821015, 4139424, 69768, -13621698, 18996120, -4925700, -57383640, 136178064, 21282912, -405810225, 557193870, -1767762, -1859194350, 3887571240, -539161920
Offset: 0
G.f.: A(x) = 1 - 9*x + 27*x^2 - 18*x^3 - 351*x^4 + 1080*x^5 + 216*x^6 +...
where A(x) = 1 - 1*9*x + 1*27*x^2 - 2*9*x^3 - 3*117*x^4 + 5*216*x^5 + 8*27*x^6 - 13*450*x^7 + 21*459*x^8 +...+ Fibonacci(n)*A109041(n)*^n +...
The g.f. is also given by the identity:
A(x) = 1 - 9*( 1*1*x/(1-x-x^2) - 1*4*x^2/(1-3*x^2+x^4) + 3*16*x^4/(1-7*x^4+x^8) - 5*25*x^5/(1-11*x^5-x^10) + 13*49*x^7/(1-29*x^7-x^14) - 21*64*x^8/(1-47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1 - 9*sum(m=1,n,fibonacci(m)*kronecker(m,3)*m^2*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
for(n=0,40,print1(a(n),", "))
A209452
a(n) = Pell(n)*A122859(n) for n>=1, with a(0)=1, where A122859 lists the coefficients in phi(-q)^3/phi(-q^3) and phi() is a Ramanujan theta function.
Original entry on oeis.org
1, -6, 24, -30, -72, 0, 840, -2028, 4896, -5910, 0, 0, -83160, -401532, 1938768, 0, -2824992, 0, 32930520, -79501308, 0, -463367580, 0, 0, 6520076640, -7870428726, 76003583088, -45872220270, -221490672624, 0, 0, -3116610274188, 7524162792576, 0, 0, 0, -127800022137480
Offset: 0
G.f.: A(x) = 1 - 6*x + 24*x^2 - 30*x^3 - 72*x^4 + 840*x^6 - 2028*x^7 + ...
where A(x) = 1 - 1*6*x + 2*12*x^2 - 5*6*x^3 - 12*6*x^4 + 70*12*x^6 - 169*12*x^7 + 408*12*x^8 - 985*6*x^9 + ... + Pell(n)*A122859(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 - 6*( 1*x/(1+2*x-x^2) - 2*x^2/(1+6*x^2+x^4) + 12*x^4/(1+34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1+1154*x^8+x^16) + ...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
-
A122859[n_]:= SeriesCoefficient[EllipticTheta[4, 0, q]^3/EllipticTheta[4, 0, q^3], {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A122859[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
-
{Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff(1 - 6*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1+A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
for(n=0,40,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments