cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael David Hirschhorn

Michael David Hirschhorn's wiki page.

Michael David Hirschhorn has authored 5 sequences.

A213080 Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)).

Original entry on oeis.org

1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8
Offset: 1

Author

Keywords

Comments

Just as Stirling's formula for the asymptotic expansion of n! involves the constant sqrt{2 Pi}, the asymptotic expansion of the product of all binomial coefficients in a row of Pascal's triangle involves a constant, the reciprocal of the constant C defined and evaluated here.
From Bernd C. Kellner, Oct 13 2024: (Start)
It turns out that 1/C is not the complete asymptotic constant for the product of the binomial coefficients in a row of Pascal's triangle. A constant factor of (2*Pi)^(-1/4) was overlooked in the asymptotic expansion of that product given by Hirschhorn in 2013. The correct asymptotic constant is A377023.
However, the constant C equals the constant F(1) as introduced before in Kellner 2009. The constants F(1), F(2), ... occur in the same context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k)){k >= 1} is strictly decreasing with limit 1. For example, for k >= 1 the asymptotic product Prod{v >= 1} (k*v)! has the asymptotic constant F(k)*A^k*(2*Pi)^(1/4), where A = A074962 denotes the Glaisher-Kinkelin constant. Let gamma = A001620 be Euler's constant and Gamma(x) be the gamma function.
For k >= 1, the constants F(k) can be computed by an explicit formula and a divergent series expansion, as follows. We have log(F(k)) = (1/(12*k))*(1-log(k)) + (k/4)*log(2*Pi) - ((k^2+1)/k)*log(A) - Sum_{v=1..k-1} (v/k)*log(Gamma(v/k)) = gamma/(12*k) - t*zeta(3)/(360*k^3) with some t in (0,1), respectively.
It follows that log(F(1)) = 1/12 + log(2*Pi)/4 - 2*log(A) = gamma/12 - t*zeta(3)/360 with some t in (0,1), and so F(1) lies in the interval (1.0457...,1.0492...) (see Kellner 2009 and 2024). (End)

Examples

			1.04633506677050318098095065697776037101974218113264442441587534042035751563744...
		

Programs

  • Maple
    exp(2*Zeta(1,-1)-1/12)*(2*Pi)^(1/4); evalf(%,100); # Peter Luschny, Jun 22 2012
  • Mathematica
    RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *)
  • PARI
    exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision
    mpmath.exp(2*mpmath.zeta(-1,1,1)-1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012
    

Formula

Equals (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 where A denotes the Glaisher-Kinkelin constant.
Equals exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4).
A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439... - Peter Luschny, Jun 22 2012
The sqrt of the constant equals Limit_{n>=1} (Product_{k=1..n-1} k!) / f(n) where f(n) = (2*Pi)^(n/2-1/8)*exp(1/24-3/4*n^2)*n^(1/2*n^2-1/12). - Peter Luschny, Jun 23 2012

A151558 Decimal expansion of the Lucas nested (A000204) radical.

Original entry on oeis.org

1, 8, 4, 0, 7, 6, 8, 3, 2, 8, 1, 4, 6, 0, 8, 2, 6, 8, 9, 8, 2, 0, 5, 7, 4, 5, 7, 7, 7, 4, 3, 5, 5, 7, 7, 8, 8, 6, 2, 1, 0, 6, 0, 3, 8, 7, 7, 7, 2, 1, 5, 4, 1, 6, 0, 5, 0, 8, 4, 9, 0, 2, 5, 0, 0, 4, 7, 8, 5, 1, 7, 4, 0, 5, 5, 6, 3, 4, 7, 0, 7, 7, 8, 5, 8, 9, 6, 0, 4, 5, 7, 0, 8, 6, 5, 1, 7, 2, 7, 8, 6, 1, 9, 5, 1
Offset: 1

Author

Keywords

Comments

Analog of A105817 for the Lucas numbers (A000204).

Examples

			1.840768328146082689820574577743557788621060387772...
		

Programs

  • Mathematica
    RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse@ LucasL@ Range@ 45], 10, 111][[1]] (* Robert G. Wilson v, May 29 2009 *)

Extensions

More terms from Robert G. Wilson v, May 29 2009

A151556 Values of (n^5+47*n)/48 as n ranges over the numbers that are == +-1 mod 6.

Original entry on oeis.org

1, 70, 357, 3366, 7748, 29597, 51604, 134113, 203475, 427344, 596471, 1094240, 1444702, 2413711, 3062718, 4778067, 5884949, 8712458, 10485145, 14894314, 17595816, 24172785, 28127672, 37588181, 43189063, 56391412, 64105419, 82063428, 92438690, 116334659
Offset: 1

Author

Keywords

Comments

((n^5+47n)/48)^2 is the sum of the squares of the n^2 integers from (n^4-24n^2-25)/48 to (n^4+24n^2-73)/48. For example, when n=5, 70^2 is the sum of the 25 squares of the integers from 0 to 24.

Crossrefs

Programs

  • Magma
    [((2*n-1)*(81*n^4-162*n^3+144*n^2-63*n+58)+(135*n^4-270*n^3+210*n^2-75*n+26)*(-1)^n)/32: n in [1..30]]; // Vincenzo Librandi, Oct 25 2014
  • Mathematica
    With[{nn=20},(#^5+47#)/48&/@Sort[Join[6Range[0,nn]+1,6Range[nn]-1]]] (* Harvey P. Dale, Nov 15 2011 *)

Formula

a(n) = a(n-1)+5*a(n-2)-5*a(n-3)-10*a(n-4)+10*a(n-5)+10*a(n-6)-10*a(n-7)-5*a(n-8)+5*a(n-9)+a(n-10)-a(n-11). [R. J. Mathar, May 21 2009]
G.f.: x*(1 +69*x +282*x^2 +2664*x^3 +2957*x^4 +7494*x^5 +2957*x^6 +2664*x^7 +282*x^8 +69*x^9 +x^10)/((1+x)^5*(x-1)^6). [R. J. Mathar, May 21 2009]
a(n) = ((2*n-1)*(81*n^4-162*n^3+144*n^2-63*n+58)+(135*n^4-270*n^3+210*n^2-75*n+26)*(-1)^n)/32. - Tani Akinari, Oct 25 2014

A143981 The number of unigraphical partitions of 2m; that is, the number of partitions of 2m which are realizable as the degree sequence of one and only one graph (where loops are not allowed but multiple edges are allowed).

Original entry on oeis.org

1, 3, 6, 9, 15, 19, 26, 36, 46, 59, 80, 100, 128, 167, 211, 267, 341, 429, 541, 682, 850, 1063, 1327, 1647, 2035, 2520, 3100, 3810, 4669, 5708, 6955, 8468, 10267, 12441, 15026, 18120, 21788, 26175, 31355, 37510, 44769, 53362, 63460, 75384, 89348
Offset: 1

Author

Keywords

Examples

			For m = 4, the number of unigraphical partitions is A000041(4) + A001399(1) + A000005(5) + A083039(2) + 4 - 5 = 5 + 1 + 2 + 2 + 4 - 5 = 9.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a:=proc(m) it:=round(m^2/12)+numbpart(m)+tau(m+1)+m-5: if m mod 6 = 0 then it:=it+2 fi: if m mod 6 = 1 then it:=it+1 fi: if m mod 6 = 2 then it:=it+3 fi: if m mod 6 = 3 then it:=it+1 fi: if m mod 6 = 4 then it:=it+2 fi: if m mod 6 = 5 then it:=it+2 fi: RETURN(it): end:

Formula

For m >= 3, a(2m) = A000041(m) + A001399(m-3) + A000005(m+1) + A083039(m-2) + m - 5.

A078757 Values of A028470(n)/A000045(n+1).

Original entry on oeis.org

1, 17, 51, 449, 1853, 12853, 61557, 382024, 1971559, 11585969, 62088471, 355111613, 1939427729, 10943439733, 60338602299, 338172377293, 1873494595072, 10464657396101, 58113694771149, 324052035315389, 1801727076022631, 10038214290617749, 55845947547948897
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x^7 + x^6 - 24 x^5 + 11 x^4 + 38 x^3 - 9 x^2 - 16 x - 1) / (x^8 + x^7 - 25 x^6 + 11 x^5 + 47 x^4 - 11 x^3 - 25 x^2 - x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 13 2014 *)
    LinearRecurrence[{1,25,11,-47,-11,25,-1,-1},{1,17,51,449,1853,12853,61557,382024},30] (* Harvey P. Dale, Jul 15 2017 *)

Formula

a(n) = a(n-1)+25a(n-2)+11a(n-3)-47a(n-4)-11a(n-5)+25a(n-6)-a(n-7)-a(n-8).
G.f.: -x*(x^7+x^6-24*x^5+11*x^4+38*x^3-9*x^2-16*x-1)/(x^8+x^7-25*x^6+11*x^5+47*x^4-11*x^3-25*x^2-x+1). [Colin Barker, Jun 22 2012]

Extensions

More terms from Vincenzo Librandi, Nov 13 2014