A377024 Decimal expansion of the constant F(2) related to asymptotic products of factorials.
1, 0, 2, 3, 9, 3, 7, 4, 1, 1, 6, 3, 7, 1, 1, 8, 4, 0, 1, 5, 7, 7, 9, 5, 0, 7, 8, 2, 5, 8, 6, 2, 1, 7, 8, 0, 0, 8, 0, 3, 7, 6, 0, 9, 8, 0, 4, 3, 6, 4, 4, 0, 0, 5, 1, 2, 9, 4, 6, 9, 9, 0, 9, 5, 1, 3, 4, 7, 6, 9, 2, 4, 1, 2, 4, 0, 0, 7, 8, 2, 7, 6, 8, 7, 1, 1, 5, 2, 9, 4, 7, 4, 6, 5, 9, 8, 8, 1, 7, 3, 0, 6, 2, 3, 4, 8, 3, 6, 4, 2, 4
Offset: 1
Examples
1.02393741163711840157795078258621780080376098043644005129469909513476924124007...
Links
- Bernd C. Kellner, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, Integers 9 (2009), Article #A08, 83-106; alternative link; arXiv:0604505 [math.NT], 2006.
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
Programs
-
Maple
exp(-1/6+5/2*Zeta(1, -1))*(2*Pi)^(1/4)*2^(5/24); evalf(%, 100);
-
Mathematica
RealDigits[Exp[1/24] (2 Pi)^(1/4) 2^(5/24) / Glaisher^(5/2), 10, 100][[1]]
-
PARI
default(realprecision, 100); exp(-1/6+5/2*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24)
-
Sage
import mpmath mpmath.mp.pretty = True; mpmath.mp.dps = 100 mpmath.exp(-1/6+5/2*mpmath.zeta(-1, 1, 1))*(2*pi)^(1/4)*2^(5/24)
Formula
Equals exp(1/24)*(2*Pi)^(1/4)*2^(5/24)/A^(5/2) where A = A074962.
Equals exp(-1/6+(5/2)*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24).
Comments