A324316 Primary Carmichael numbers.
1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809
Offset: 1
Examples
1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
Links
- Bernd C. Kellner, Table of n, a(n) for n = 1..10000 (computed by using Pinch's database, see link below)
- Bernd C. Kellner, On primary Carmichael numbers, #A38 Integers 22 (2022), 39 p.; arXiv:1902.11283 [math.NT], 2019.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 p.; arXiv:1902.10672 [math.NT], 2019.
- R. G. E. Pinch, The Carmichael numbers up to 10^18, 2008.
- Index entries for sequences related to Carmichael numbers.
Crossrefs
Programs
-
Mathematica
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][[1]]; TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &]; Select[Range[1, 10^7, 2], TestCP[#] &]
-
Perl
use ntheory ":all"; my $m; forsquarefree { $m=$; say if @ > 2 && is_carmichael($m) && vecall { $ == vecsum(todigits($m,$)) } @; } 1e7; # _Dana Jacobsen, Mar 28 2019
-
Python
from sympy import factorint from sympy.ntheory import digits def ok(n): pf = factorint(n) if n < 2 or max(pf.values()) > 1: return False return all(sum(digits(n, p)[1:]) == p for p in pf) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022
Formula
a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).
Comments