cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324973 Special polygonal numbers.

Original entry on oeis.org

6, 15, 66, 70, 91, 190, 231, 435, 561, 703, 715, 782, 861, 946, 1045, 1105, 1426, 1653, 1729, 1770, 1785, 1794, 1891, 2035, 2278, 2465, 2701, 2821, 2926, 3059, 3290, 3367, 3486, 3655, 4371, 4641, 4830, 5005, 5083, 5151, 5365, 5551, 5565, 5995, 6441, 6545, 6601
Offset: 1

Views

Author

Keywords

Comments

Squarefree polygonal numbers P(r,p) = (p^2*(r-2)-p*(r-4))/2 whose greatest prime factor is p >= 3, and whose rank (or order) is r >= 3 (see A324974).
The Carmichael numbers A002997 and primary Carmichael numbers A324316 are subsequences. See Kellner and Sondow 2019.

Examples

			P(3,5) = 15 is squarefree, and its greatest prime factor is 5, so 15 is a member.
More generally, if p is an odd prime and P(3,p) is squarefree, then P(3,p) is a member, since P(3,p) = (p^2+p)/2 = p*(p+1)/2, so p is its greatest prime factor.
CAUTION: P(6,7) = 91 = 7*13 is a member even though 7 is NOT its greatest prime factor, as P(6,7) = P(3,13) and 13 is its greatest prime factor.
		

Crossrefs

Subsequence of A324972 = intersection of A005117 and A090466.
A002997, A324316, A324319 and A324320 are subsequences.

Programs

  • Mathematica
    GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
    T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &];
    Take[Union[Table[Last[t], {t, T}]], 47]
  • PARI
    is(k) = if(issquarefree(k) && k>1, my(p=vecmax(factor(k)[, 1]), r); p>2 && (r=2*(k/p-1)/(p-1)) && denominator(r)==1, 0); \\ Jinyuan Wang, Feb 18 2021

Extensions

Several missing terms inserted by Jinyuan Wang, Feb 18 2021

A324975 Rank of the n-th Carmichael number.

Original entry on oeis.org

6, 10, 12, 8, 8, 10, 6, 6, 8, 18, 52, 12, 12, 18, 98, 164, 22, 6, 50, 8, 96, 34, 52, 46, 52, 6, 6, 156, 20, 46, 36, 32, 16, 8, 304, 36, 20, 36, 10, 316, 76, 468, 8, 30, 24, 1580, 84, 54, 8, 12, 250, 28, 92, 36, 20, 418, 456, 928, 188, 16, 8, 276, 284, 56, 144
Offset: 1

Views

Author

Keywords

Comments

See A324974 for definition and explanation of rank of a special polygonal number, hence of rank of a Carmichael number A002997 by Kellner and Sondow 2019.
The ranks of the primary Carmichael numbers A324316 form the subsequence A324976.

Examples

			If m = A002997(1) = 561 = 3*11*17, then p = 17, so a(1) = 2+2*((561/17)-1)/(17-1) = 6.
		

Crossrefs

Subsequence of A324974.
A324976 is a subsequence.

Programs

  • Mathematica
    T = Cases[Range[1, 10000000, 2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]];
    GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
    Table[2 + 2*(T[[i]]/GPF[T[[i]]] - 1)/(GPF[T[[i]]] - 1), {i, Length[T]}]

Formula

a(n) = 2+2*((m/p)-1)/(p-1), where m = A002997(n) and p is its greatest prime factor. (See Formula in A324974.) Hence a(n) is even, by Carmichael's theorem that p-1 divides (m/p)-1, for any prime factor p of a Carmichael number m.

A324976 Rank of the n-th primary Carmichael number.

Original entry on oeis.org

12, 8, 18, 12, 52, 52, 20, 32, 16, 54, 8, 36, 124, 34, 12, 72, 96, 26, 28, 76, 98, 1804, 108, 124, 18, 72, 172, 120, 10, 104, 32, 244, 130, 376, 18, 92, 780, 36, 172, 92, 284, 24, 198, 12, 244, 64, 234, 340, 100, 284, 24, 124, 44, 518, 364, 16, 82, 148, 8, 206
Offset: 1

Views

Author

Keywords

Comments

See A324974 for definition and explanation of rank of a special polygonal number, hence of rank of a primary Carmichael number A324316 by Kellner and Sondow 2019.

Examples

			If m = A324316(1) = 1729 = 7*13*19, then p = 19, so a(1) = 2+2*((1729/19)-1)/(19-1) = 12.
		

Crossrefs

Subsequence of A324975 (rank of the n-th Carmichael number A002997) and of A324974 (rank of the n-th special polygonal number A324973).
Cf. also A324316, A324972.

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
    T = Select[Range[1, 10^7, 2], TestCP[#] &];
    GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
    Table[2 + 2*(T[[i]]/GPF[T[[i]]] - 1)/(GPF[T[[i]]] - 1), {i, Length[T]}]

Formula

a(n) = 2+2*((m/p)-1)/(p-1), where m = A324316(n) and p is its greatest prime factor. Hence a(n) is even; see Formula in A324975.

Extensions

More terms from Amiram Eldar, Mar 27 2019
Showing 1-3 of 3 results.