A087788 3-Carmichael numbers: Carmichael numbers equal to the product of 3 primes: k = p*q*r, where p < q < r are primes such that a^(k-1) == 1 (mod k) if a is prime to k.
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 46657, 52633, 115921, 162401, 252601, 294409, 314821, 334153, 399001, 410041, 488881, 512461, 530881, 1024651, 1152271, 1193221, 1461241, 1615681, 1857241, 1909001, 2508013
Offset: 1
Examples
a(6)=6601=7*23*41: 7-1|6601-1, 23-1|6601-1, 41-1|6601-1, i.e., 6|6600, 22|6600, 40|6600.
References
- O. Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.
Links
- R. J. Mathar and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 3284 terms from Mathar)
- F. Arnault, Constructing Carmichael numbers which are strong pseudoprimes to several bases, Journal of Symbolic Computation, vol. 20, no 2, Aug. 1995, pp. 151-161.
- Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc., Vol. 45, No. 4 (1939), pp. 269-274.
- Harvey Dubner, Carmichael Numbers of the form (6m+1)(12m+1)(18m+1), Journal of Integer Sequences, Vol. 5 (2002) Article 02.2.1,
- A. Granville and C. Pomerance, Two contradictory conjectures concerning Carmichael numbers, Math. Comp. 71 (2002), pp. 883-90.
- D. R. Heath-Brown, Carmichael numbers with three prime factors, Hardy-Ramanujan Journal 30 (2007), pp. 6-12.
- G. Jaeschke, The Carmichael numbers to 10^12, Math. Comp., 55 (1990), 383-389.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Math Reference Project, Carmichael Numbers
- R. G. E. Pinch, The Carmichael numbers up to 10^18, 2008.
- Rosetta Code, Programs for finding 3-Carmichael numbers
Programs
-
PARI
list(lim)=my(v=List());forprime(p=3,(lim)^(1/3), forprime(q=p+1, sqrt(lim\p),forprime(r=q+1,lim\(p*q),if((q*r-1)%(p-1)||(p*r-1)%(q-1)||(p*q-1)%(r-1),,listput(v,p*q*r)))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Nov 19 2012
Formula
k is composite and squarefree and for p prime, p|k => p-1|k-1. A composite odd number k is a Carmichael number if and only if k is squarefree and p-1 divides k-1 for every prime p dividing k (Korselt, 1899) k = p*q*r, p-1|k-1, q-1|k-1, r-1|k-1.
Extensions
Minor edit to definition by N. J. A. Sloane, Sep 14 2009
Comments