cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A087788 3-Carmichael numbers: Carmichael numbers equal to the product of 3 primes: k = p*q*r, where p < q < r are primes such that a^(k-1) == 1 (mod k) if a is prime to k.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 46657, 52633, 115921, 162401, 252601, 294409, 314821, 334153, 399001, 410041, 488881, 512461, 530881, 1024651, 1152271, 1193221, 1461241, 1615681, 1857241, 1909001, 2508013
Offset: 1

Views

Author

Miklos Kristof, Oct 07 2003

Keywords

Comments

It is interesting that most of the numbers have the last digit 1. For example 530881, 3581761, 7207201, etc.
Granville & Pomerance conjecture that there are ~ c x^(1/3)/(log x)^3 terms of this sequence up to x. Heath-Brown proves that, for any e > 0, there are O(x^(7/20 + e)) terms of this sequence up to x. - Charles R Greathouse IV, Nov 19 2012

Examples

			a(6)=6601=7*23*41: 7-1|6601-1, 23-1|6601-1, 41-1|6601-1, i.e., 6|6600, 22|6600, 40|6600.
		

References

  • O. Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.

Crossrefs

Intersection of A002997 and A007304.
Cf. A162290.

Programs

  • PARI
    list(lim)=my(v=List());forprime(p=3,(lim)^(1/3), forprime(q=p+1, sqrt(lim\p),forprime(r=q+1,lim\(p*q),if((q*r-1)%(p-1)||(p*r-1)%(q-1)||(p*q-1)%(r-1),,listput(v,p*q*r)))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Nov 19 2012

Formula

k is composite and squarefree and for p prime, p|k => p-1|k-1. A composite odd number k is a Carmichael number if and only if k is squarefree and p-1 divides k-1 for every prime p dividing k (Korselt, 1899) k = p*q*r, p-1|k-1, q-1|k-1, r-1|k-1.

Extensions

Minor edit to definition by N. J. A. Sloane, Sep 14 2009

A033502 Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1), where 6*k+1, 12*k+1 and 18*k+1 are all primes.

Original entry on oeis.org

1729, 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, 11346205609, 13079177569, 21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409, 172018713961, 173032371289, 464052305161
Offset: 1

Views

Author

Keywords

Comments

Also called Chernick's Carmichael numbers. The polynomial (6*k+1)*(12*k+1)*(18*k+1) is the simplest Chernick polynomial. [Named after the American physicist and mathematician Jack Chernick (1911-1971). - Amiram Eldar, Jun 15 2021]
The first term, 1729, is the Hardy-Ramanujan number and the smallest primary Carmichael number (A324316).
Dickson's conjecture implies that this sequence is infinite, as pointed out by Chernick.
All terms of this sequence are primary Carmichael numbers (A324316) having the following remarkable property. Let m be a term of A033502. For each prime divisor p of m, the sum of the base-p digits of m equals p. This property also holds for "almost all" 3-term Carmichael numbers (A087788), since they can be represented by certain Chernick polynomials, whose values obey a strict s-decomposition (A324460) besides certain exceptions, see Kellner 2019. - Bernd C. Kellner, Aug 03 2022

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A13, pp. 50-53.

Crossrefs

Values of k are given by A046025. Subsequence of A002997, A087788, and A324316.

Programs

  • Magma
    [n : k in [1..710] | IsPrime(a) and IsPrime(b) and IsPrime(c) and IsOne(n mod CarmichaelLambda(n)) where n is a*b*c where a is 6*k+1 where b is 12*k+1 where c is 18*k+1]; // Arkadiusz Wesolowski, Oct 29 2013
  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; (6# + 1)(12# + 1)(18# + 1) & /@
    Select[ Range@ 1000, PrimeQ[6# + 1] && PrimeQ[12# + 1] && PrimeQ[18# + 1] && CarmichaelNbrQ[(6# + 1)(12# + 1)(18# + 1)] &]

Extensions

Definition corrected (thanks to Umberto Cerruti) by Bruno Berselli, Jan 18 2013

A324456 Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) = g.

Original entry on oeis.org

6, 10, 12, 15, 18, 20, 21, 24, 28, 33, 34, 36, 39, 40, 45, 48, 52, 57, 63, 65, 66, 68, 72, 76, 80, 85, 87, 88, 91, 93, 96, 99, 100, 105, 111, 112, 117, 120, 126, 130, 132, 133, 135, 136, 144, 145, 148, 153, 156, 160, 165, 171, 175, 176, 185, 186, 189, 190
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_g(m) gives the sum of the base-g digits of m.
The sequence is infinite, since it contains A324460.
The sequence also contains the 3-Carmichael numbers A087788 and the primary Carmichael numbers A324316.
A term m must have at least 2 prime factors, and the divisor g satisfies the inequalities 1 < g < m^(1/(ord_g(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
Note that the sequence contains the 3-Carmichael numbers, but not all Carmichael numbers. This is a nontrivial fact.
The subsequence A324460 mainly gives examples in which g is composite.
See Kellner 2019.
It appears that g is usually prime: compare with A324857 (g prime) and the sparser sequence A324858 (g composite). However, g is usually composite for higher values of m. - Jonathan Sondow, Mar 17 2019

Examples

			6 is a member, since 2 divides 6 and s_2(6) = 2.
		

Crossrefs

Subsequences are A033502, A087788, A324316, A324458, A324460.
Subsequence of A324455.
Union of A324857 and A324858.

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    f[n_] := AnyTrue[Divisors[n], s[n, #] == # &];
    Select[Range[5000], f[#] &]
  • PARI
    isok(n) = {fordiv(n, d, if ((d>1) && (sumdigits(n, d) == d), return (1)););} \\ Michel Marcus, Mar 19 2019

A324455 Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) >= g.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_g(m) gives the sum of the base-g digits of m.
The sequence is infinite, since it contains A324460 and the Carmichael numbers A002997.
A term m must have at least 2 prime factors, and the divisor g satisfies the inequalities 1 < g < m^(1/(ord_g(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
See Kellner 2019.

Examples

			6 is a member, since 2 divides 6 and s_2(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    f[n_] := AnyTrue[Divisors[n], s[n, #] >= # &];
    Select[Range[1000], f[#] &]

A324457 Numbers m > 1 such that every prime divisor p of m satisfies s_p(m) >= p.

Original entry on oeis.org

24, 45, 48, 72, 96, 120, 144, 189, 192, 216, 224, 225, 231, 240, 288, 315, 320, 325, 336, 352, 360, 384, 405, 432, 450, 480, 525, 540, 560, 561, 567, 576, 594, 600, 637, 648, 672, 704, 720, 768, 792, 819, 825, 832, 850, 864, 891, 896, 924, 945, 960, 975, 980
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_p(m) gives the sum of the base-p digits of m.
The sequence is infinite, since it contains A324315, and thus the Carmichael numbers A002997.
Being a subsequence of A324459, a term m has the following properties:
m must have at least 2 prime factors. If m = p1^e1 * p2^e2 with two primes p1 and p2, then e1 + e2 >= 3.
Each prime factor p of m satisfies the inequalities p < m^(1/(ord_p(m)+1)) <= sqrt(m), where ord_p(m) gives the maximum exponent e such that p^e divides m.
In the terminology of A324459, the prime factorization of m equals an s-decomposition of m.
See Kellner 2019.
a(n) is a Carmichael number A002997 iff a(n) is squarefree and s_p(a(n)) == 1 (mod p-1) for every prime factor p of a(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 16 2019

Examples

			The number 45 has the prime factors 3 and 5. Since s_3(45) = 3 and s_5(45) = 5, 45 is a member.
		

Crossrefs

Subsequences are A002997, A324315, and A324458.
Subsequence of A324459 and A324857.

Programs

  • Mathematica
    s[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    f[n_] := AllTrue[Transpose[FactorInteger[n]][[1]], s[n, #] >= # &];
    Select[Range[10^4], f[#] &]

A324458 Numbers m > 1 such that every prime divisor p of m satisfies s_p(m) = p.

Original entry on oeis.org

45, 325, 405, 637, 891, 1729, 2821, 3751, 4961, 6517, 7381, 8125, 8281, 10625, 13357, 21141, 26353, 28033, 29341, 31213, 33125, 35443, 46657, 47081, 58621, 65341, 74431, 78625, 81289, 94501, 98125, 99937, 123823, 146461, 231601, 236321, 252601, 254221, 294409
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_p(m) gives the sum of the base-p digits of m.
The sequence contains the primary Carmichael numbers A324316.
Being a subsequence of A324460, a term m has the following properties:
m must have at least 2 prime factors. If m = p1^e1 * p2^e2 with two primes p1 and p2, then e1 + e2 >= 3.
Each prime factor p of m satisfies the inequalities p < m^(1/(ord_p(m)+1)) <= sqrt(m), where ord_p(m) gives the maximum exponent e such that p^e divides m.
In the terminology of A324460, the prime factorization of m equals a strict s-decomposition of m.
See Kellner 2019.
a(n) is squarefree iff a(n) is a primary Carmichael number A324316. - Jonathan Sondow, Mar 16 2019

Examples

			The number 45 has the prime factors 3 and 5. Since s_3(45) = 3 and s_5(45) = 5, 45 is a member.
		

Crossrefs

Subsequence is A324316. Subsequence of A324457, A324459, and A324460.

Programs

  • Mathematica
    s[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    f[n_] := AllTrue[Transpose[FactorInteger[n]][[1]], s[n, #] == # &];
    Select[Range[10^7], f[#] &]

A324459 Numbers m > 1 that have an s-decomposition.

Original entry on oeis.org

24, 45, 48, 72, 96, 120, 144, 189, 192, 216, 224, 225, 231, 240, 280, 288, 315, 320, 325, 336, 352, 360, 378, 384, 405, 432, 450, 480, 525, 540, 560, 561, 567, 576, 594, 600, 637, 640, 648, 672, 704, 720, 768, 792, 819, 825, 832, 850, 864, 891, 896, 924, 945
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The sequence is infinite, since it contains A324460 and the Carmichael numbers A002997.
A number m > 1 has an s-decomposition if there exists a decomposition in n proper factors g_k with exponents e_k >= 1 (the factors g_k being strictly increasing but not necessarily coprime) such that
m = g_1^e_1 * ... * g_n^e_n, where s_{g_k}(m) >= g_k for all k,
and s_g(m) gives the sum of the base-g digits of m.
A term m has the following properties:
m must have at least 2 factors g_k. If m = g_1^e_1 * g_2^e_2 with exactly two factors, then e_1 + e_2 >= 3.
Each factor g_k of m satisfies the inequalities 1 < g_k < m^(1/(ord_{g_k}(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
See Kellner 2019.

Examples

			Since 225 = 5^2 * 9 with s_5(225) = 5 and s_9(225) = 9, 225 is a member.
		

Crossrefs

Subsequences are A002997, A324457, A324458, A324460.

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    HasDecomp[m_] := Module[{E0, EV, G, R, k, n, v},
    If[m < 1 || !CompositeQ[m], Return[False]];
    G = Select[Divisors[m], s[m, #] >= # &];
    n = Length[G]; If[n < 2, Return[False]];
    E0 = Array[0 &, n]; EV = Array[v, n];
    R = Solve[Product[G[[k]]^EV[[k]], {k, 1, n}] == m && EV >= E0, EV, Integers]; Return[R != {}]];
    Select[Range[10^3], HasDecomp[#] &]
Showing 1-7 of 7 results.