cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A046025 Numbers k such that 6*k+1, 12*k+1 and 18*k+1 are all primes.

Original entry on oeis.org

1, 6, 35, 45, 51, 55, 56, 100, 121, 195, 206, 216, 255, 276, 370, 380, 426, 506, 510, 511, 710, 741, 800, 825, 871, 930, 975, 1025, 1060, 1115, 1140, 1161, 1270, 1280, 1281, 1311, 1336, 1361, 1365, 1381, 1420, 1421, 1441, 1490, 1515, 1696, 1805, 1875, 1885
Offset: 1

Views

Author

Keywords

Comments

Main entry for this sequence is A033502.
k is a Carmichael number generator giving C(k) = (6*k+1)*(12*k+1)*(18*k+1) = A382809(k).

References

  • R. K. Guy, Unsolved Problems in Number Theory, A13.
  • Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, Wiley NY 1991, page 83, problem #20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],And@@PrimeQ[{6,12,18}#+1]&] (* Harvey P. Dale, May 26 2014 *)
  • PARI
    is(n)=isprime(6*n+1) && isprime(12*n+1) && isprime(18*n+1) \\ Charles R Greathouse IV, Jan 04 2022

Extensions

Better description from Robert G. Wilson v, Sep 27 2000

A324456 Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) = g.

Original entry on oeis.org

6, 10, 12, 15, 18, 20, 21, 24, 28, 33, 34, 36, 39, 40, 45, 48, 52, 57, 63, 65, 66, 68, 72, 76, 80, 85, 87, 88, 91, 93, 96, 99, 100, 105, 111, 112, 117, 120, 126, 130, 132, 133, 135, 136, 144, 145, 148, 153, 156, 160, 165, 171, 175, 176, 185, 186, 189, 190
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_g(m) gives the sum of the base-g digits of m.
The sequence is infinite, since it contains A324460.
The sequence also contains the 3-Carmichael numbers A087788 and the primary Carmichael numbers A324316.
A term m must have at least 2 prime factors, and the divisor g satisfies the inequalities 1 < g < m^(1/(ord_g(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
Note that the sequence contains the 3-Carmichael numbers, but not all Carmichael numbers. This is a nontrivial fact.
The subsequence A324460 mainly gives examples in which g is composite.
See Kellner 2019.
It appears that g is usually prime: compare with A324857 (g prime) and the sparser sequence A324858 (g composite). However, g is usually composite for higher values of m. - Jonathan Sondow, Mar 17 2019

Examples

			6 is a member, since 2 divides 6 and s_2(6) = 2.
		

Crossrefs

Subsequences are A033502, A087788, A324316, A324458, A324460.
Subsequence of A324455.
Union of A324857 and A324858.

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    f[n_] := AnyTrue[Divisors[n], s[n, #] == # &];
    Select[Range[5000], f[#] &]
  • PARI
    isok(n) = {fordiv(n, d, if ((d>1) && (sumdigits(n, d) == d), return (1)););} \\ Michel Marcus, Mar 19 2019

A174734 Prime numbers n such that 2n-1 and 3n-2 are prime.

Original entry on oeis.org

3, 7, 37, 211, 271, 307, 331, 337, 601, 727, 1171, 1237, 1297, 1531, 1657, 2221, 2281, 2557, 3037, 3061, 3067, 4261, 4447, 4801, 4951, 5227, 5581, 5851, 6151, 6361, 6691, 6841, 6967, 7621, 7681, 7687, 7867, 8017, 8167, 8191, 8287, 8521, 8527, 8647, 8941
Offset: 1

Views

Author

Michel Lagneau, Mar 28 2010

Keywords

Comments

If n, 2n-1 and 3n-2 are prime numbers, and if n >= 5, then n*(2*n-1)*(3*n-2) is a Carmichael number (A033502).
Proof: there exist numbers m such that n=6m+1 is prime (if n=6m+5, then 2n-1 = 12m+9 is composite). Let p=(6m+1)(12m+1)(18m+1) = a*b*c. Then p-1 = 6*12*18*m^3 + (6*12 + 6*18 + 12*18)*m^2 + (6 + 12 + 19)*m, so p-1 is divisible by a-1=6m, by b-1=12m, and by c-1=18m; thus p is a Carmichael number.

Examples

			For n=3, 2n-1 = 5, 3n-2 = 7.
For n=7, 2n-1 = 13, 3n-2 = 19 and 7*13*19 = 1729 (a Carmichael number).
For n=37, 2n-1 = 73, 3n-2 = 109 and 37*73*109 = 294409 (a Carmichael number).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A13.

Crossrefs

Programs

  • Magma
    [ n: n in PrimesUpTo(10000) | IsPrime(2*n-1) and IsPrime(3*n-2) ];
    
  • Maple
    with(numtheory): for n from 2 to 15000 do: if type(n,prime)=true and type(2*n-1,prime)=true and type(3*n-2,prime)=true then print (n):else fi:od:
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2*#-1] && PrimeQ[3*#-2]&] (* Vladimir Joseph Stephan Orlovsky, Jan 13 2011 *)
  • PARI
    forprime(p=3,10^3, isprime(2*p-1) && isprime(3*p-2) && print1(p,", ")); \\ Joerg Arndt, Nov 29 2014

Extensions

Typo in term corrected by D. S. McNeil, Nov 20 2010

A318646 The least Chernick's "universal form" Carmichael number with n prime factors.

Original entry on oeis.org

1729, 63973, 26641259752490421121, 1457836374916028334162241, 24541683183872873851606952966798288052977151461406721, 53487697914261966820654105730041031613370337776541835775672321, 58571442634534443082821160508299574798027946748324125518533225605795841
Offset: 3

Views

Author

Amiram Eldar, Aug 31 2018

Keywords

Comments

Chernick proved that U(k, m) = (6m + 1)*(12m + 1)*Product_{i = 1..k-2} (9*(2^i)m + 1), for k >= 3 and m >= 1 is a Carmichael number, if all the factors are primes and, for k >= 4, 2^(k-4) divides m. He called U(k, m) "universal forms". This sequence gives a(k) = U(k, m) with the least value of m. The least values of m for k = 3, 4, ... are 1, 1, 380, 380, 780320, 950560, 950560, 3208386195840, 31023586121600, ...

Examples

			For k=3, m = 1, a(3) = U(3, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1) = 1729.
For k=4, m = 1, a(4) = U(4, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1)*(36*1 + 1) = 63973.
For k=5, m = 380, a(5) = U(5, 1) = (6*380 + 1)*(12*380 + 1)*(18*380 + 1)*(36*380 + 1)*(72*380 + 1) =  26641259752490421121.
		

Crossrefs

Cf. A002997, A033502 (3 prime factors), A206024 (4 prime factors), A206349 (5 prime factors), A126797.

Programs

  • Mathematica
    fc[k_] := If[k < 4, 1, 2^(k - 4)]; a={};Do[v = Join[{6, 12}, 2^Range[k-2]*9];
    w = fc[k]; x = v*w; m = 1; While[! AllTrue[x*m + 1, PrimeQ], m++]; c=Times @@ (x*m + 1);AppendTo[a,c], {k, 3, 9}]; a

A036060 Number of 3-component Carmichael numbers C = (6M + 1)(12M + 1)(18M + 1) < 10^n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 7, 10, 16, 25, 50, 86, 150, 256, 436, 783, 1435, 2631, 4765, 8766, 16320, 30601, 57719, 109504, 208822, 400643, 771735, 1494772, 2903761, 5658670, 11059937, 21696205, 42670184, 84144873, 66369603, 329733896, 655014986, 1303918824, 2601139051
Offset: 3

Views

Author

Keywords

Comments

Note that this is different from the count of 3-Carmichael numbers, A132195. The numbers counted here are neither those listed in A087788 (3 arbitrary prime factors) nor those listed in A033502 (where 6m + 1, 12m + 1 and 18m + 1 are all prime). - M. F. Hasler, Apr 14 2015

References

  • Posting by Harvey Dubner (harvey(AT)dubner.com) to Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Nov 23 1998.

Crossrefs

Extensions

Terms updated (from Dubner's paper) by Amiram Eldar, Aug 11 2017

A242980 Carmichael numbers of the form (6*k + 1)*(12*k + 1)*(18*k + 1), where only two of the three numbers 6*k + 1, 12*k + 1, 18*k + 1 are prime.

Original entry on oeis.org

172081, 1773289, 4463641, 47006785, 295643089, 798770161, 1150270849, 1420379065, 1976295241, 18390744505, 122160500281, 134642101321, 215741809801, 228944441089, 263610459505, 321140603665, 374464040689, 444722065201, 676328168881, 1009514855521
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 28 2014

Keywords

Crossrefs

Programs

  • Magma
    lst:=[]; for k in [1..920] do t:={n: n in [1..3] | IsPrime(6*k*n+1)}; if #Set(t) eq 2 then c:=&*[6*k*n+1: n in [1..3]]; if IsOne(c mod CarmichaelLambda(c)) then lst:=Append(lst, c); end if; end if; end for; lst;

A242981 Carmichael numbers of the form (6*k + 1)*(12*k + 1)*(18*k + 1), where only one of the three numbers 6*k + 1, 12*k + 1, 18*k + 1 is prime.

Original entry on oeis.org

13992265, 1504651681, 14782305601, 292869912385, 2387706608354185, 4484354372982001, 70895950685971489, 807481759780458361, 1659264916949696161, 118023300545190612481, 140695625117781970705, 11710597360056333492601, 19818019625768288167321
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 28 2014

Keywords

Crossrefs

Programs

  • Magma
    lst:=[]; for k in [1..2482095] do t:={n: n in [1..3] | IsPrime(6*k*n+1)}; if #Set(t) eq 1 then c:=&*[6*k*n+1: n in [1..3]]; if IsOne(c mod CarmichaelLambda(c)) then lst:=Append(lst, c); end if; end if; end for; lst;

A182087 Carmichael numbers of the form C = (30n-p)*(60n-(2p+1))*(90n-(3p+2)), where n is a natural number and p, 2p+1, 3p+2 are all three prime numbers.

Original entry on oeis.org

1729, 172081, 294409, 1773289, 4463641, 56052361, 118901521, 172947529, 216821881, 228842209, 295643089, 798770161, 1150270849, 1299963601, 1504651681, 1976295241, 2301745249, 9624742921, 11346205609, 13079177569
Offset: 1

Views

Author

Marius Coman, Apr 11 2012

Keywords

Comments

These numbers can be reduced to only two possible forms: C =(30n-23)*(60n-47)*(90n-71) or C = (30n-29)*(60n-59)*(90n-89). In the first form, for the particular case when 30n-23,60n-47 and 90n-71 are all three prime numbers, we obtain the Chernick numbers of the form 10m+1 (for k = 5n-4 we have C = (6k+1)*(12k+1)*(18k+1)). In the second form, for the particular case when 30n-29,60n-59 and 90n-89 are all three prime numbers, we obtain the Chernick numbers of the form 10m+9 (for k = 5n-5 we have C = (6k+1)*(12k+1)*(18k+1)).
So the Chernick numbers can be divided into two categories: Chernick numbers of the form (30n+7)*(60n+13)*(90n+19) and Chernick numbers of the form (30n+1)*(60n+1)*(90n+1).

Crossrefs

Programs

  • PARI
    list(lim)={
        my(v=List(),f);
        for(k=1,round(solve(x=(lim/162000)^(1/3),lim^(1/3),(30*x-23)*(60*x-47)*(90*x-71)-lim)),
            n=(30*k-23)*(60*k-47)*(90*k-71)-1;
            f=factor(30*k-23);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            f=factor(60*k-47);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            f=factor(90*k-71);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            listput(v,n+1)
        );
        for(k=2,round(solve(x=(lim/162000)^(1/3),lim^(1/3),(30*x-29)*(60*x-59)*(90*x-89)-lim)),
            n=(30*k-29)*(60*k-59)*(90*k-89)-1;
            f=factor(30*k-29);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            f=factor(60*k-59);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            f=factor(90*k-89);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            listput(v,n+1)
        );
        vecsort(Vec(v))
    }; \\ Charles R Greathouse IV, Oct 02 2012

A221742 Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1) which are the product of four prime numbers.

Original entry on oeis.org

172081, 1773289, 4463641, 295643089, 798770161, 1976295241, 122160500281, 374464040689, 444722065201, 676328168881, 1009514855521, 2382986541601, 3022286597929, 9031805532361, 33648448111489, 155773422536761, 206932492972801, 366715617643441, 708083570971801
Offset: 1

Views

Author

Bruno Berselli, Jan 23 2013, based on the Cerruti paper

Keywords

Crossrefs

Cf. A002997, A033502, A221743 (associated k).
Subsequence of A182087.

Programs

  • Magma
    [c: n in [1..10^4] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
  • Maple
    with(numtheory);P:=proc(q)local a,b,k,ok,n;
    for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
    if issqrfree(a) and nops(b)=4 then ok:=1;
    for k from 1 to 4 do if not type((a-1)/(b[k][1]-1),integer) then ok:=0;
    break; fi; od; if ok=1 then print(a); fi;
    fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    g[n_] := (6*n+1)*(12*n+1)*(18*n+1); testQ[n_] := Block[{p,e}, {p, e} = Transpose@ FactorInteger@ n; e == {1,1,1,1} && Max[Mod[n-1, p-1]] == 0]; Select[g /@ Range[10^4], testQ] (* Giovanni Resta, May 21 2013 *)

A221743 Numbers k such that (6*k+1)*(12*k+1)*(18*k+1) is a Carmichael number which is the product of four prime numbers.

Original entry on oeis.org

5, 11, 15, 61, 85, 115, 455, 661, 700, 805, 920, 1225, 1326, 1910, 2961, 4935, 5425, 6565, 8175, 10885, 11375, 12155, 13230, 18315, 37800, 39325, 45325, 59726, 69440, 99645, 113120, 121365, 129850, 144685, 211945, 353465, 378940, 389896, 392625
Offset: 1

Views

Author

Bruno Berselli, Jan 23 2013, based on the Cerruti paper

Keywords

Crossrefs

Cf. A002997, A033502, A221742 (associated Carmichael numbers).
Subsequence of A101187.

Programs

  • Magma
    [n: n in [1..4*10^5] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
  • Maple
    with(numtheory);P:=proc(q)local a,b,k,ok,n;
    for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
    if issqrfree(a) and nops(b)=4 then ok:=1;
    for k from 1 to 4 do if not type((a-1)/(b[k][1]-1),integer) then ok:=0;
    break; fi; od; if ok=1 then print(n); fi;
    fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    IsCarmichaelQ[n_] := Module[{f}, If[EvenQ[n] || PrimeQ[n], False, f = Transpose[FactorInteger[n]][[1]]; Union[Mod[n-1, f-1]] == {0}]]; n = 0; t = {}; While[Length[t] < 39, n++; c = (6*n + 1)*(12*n + 1)*(18*n + 1); If[SquareFreeQ[c] && Length[FactorInteger[c]] == 4 && IsCarmichaelQ[c], AppendTo[t, n]]]; t (* T. D. Noe, Jan 23 2013 *)
Showing 1-10 of 18 results. Next