cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A221743 Numbers k such that (6*k+1)*(12*k+1)*(18*k+1) is a Carmichael number which is the product of four prime numbers.

Original entry on oeis.org

5, 11, 15, 61, 85, 115, 455, 661, 700, 805, 920, 1225, 1326, 1910, 2961, 4935, 5425, 6565, 8175, 10885, 11375, 12155, 13230, 18315, 37800, 39325, 45325, 59726, 69440, 99645, 113120, 121365, 129850, 144685, 211945, 353465, 378940, 389896, 392625
Offset: 1

Views

Author

Bruno Berselli, Jan 23 2013, based on the Cerruti paper

Keywords

Crossrefs

Cf. A002997, A033502, A221742 (associated Carmichael numbers).
Subsequence of A101187.

Programs

  • Magma
    [n: n in [1..4*10^5] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
  • Maple
    with(numtheory);P:=proc(q)local a,b,k,ok,n;
    for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
    if issqrfree(a) and nops(b)=4 then ok:=1;
    for k from 1 to 4 do if not type((a-1)/(b[k][1]-1),integer) then ok:=0;
    break; fi; od; if ok=1 then print(n); fi;
    fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    IsCarmichaelQ[n_] := Module[{f}, If[EvenQ[n] || PrimeQ[n], False, f = Transpose[FactorInteger[n]][[1]]; Union[Mod[n-1, f-1]] == {0}]]; n = 0; t = {}; While[Length[t] < 39, n++; c = (6*n + 1)*(12*n + 1)*(18*n + 1); If[SquareFreeQ[c] && Length[FactorInteger[c]] == 4 && IsCarmichaelQ[c], AppendTo[t, n]]]; t (* T. D. Noe, Jan 23 2013 *)
Showing 1-1 of 1 results.