cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A221742 Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1) which are the product of four prime numbers.

Original entry on oeis.org

172081, 1773289, 4463641, 295643089, 798770161, 1976295241, 122160500281, 374464040689, 444722065201, 676328168881, 1009514855521, 2382986541601, 3022286597929, 9031805532361, 33648448111489, 155773422536761, 206932492972801, 366715617643441, 708083570971801
Offset: 1

Views

Author

Bruno Berselli, Jan 23 2013, based on the Cerruti paper

Keywords

Crossrefs

Cf. A002997, A033502, A221743 (associated k).
Subsequence of A182087.

Programs

  • Magma
    [c: n in [1..10^4] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
  • Maple
    with(numtheory);P:=proc(q)local a,b,k,ok,n;
    for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
    if issqrfree(a) and nops(b)=4 then ok:=1;
    for k from 1 to 4 do if not type((a-1)/(b[k][1]-1),integer) then ok:=0;
    break; fi; od; if ok=1 then print(a); fi;
    fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    g[n_] := (6*n+1)*(12*n+1)*(18*n+1); testQ[n_] := Block[{p,e}, {p, e} = Transpose@ FactorInteger@ n; e == {1,1,1,1} && Max[Mod[n-1, p-1]] == 0]; Select[g /@ Range[10^4], testQ] (* Giovanni Resta, May 21 2013 *)
Showing 1-1 of 1 results.