cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michel Lagneau

Michel Lagneau's wiki page.

Michel Lagneau has authored 1716 sequences. Here are the ten most recent ones:

A386516 Least k such that k^2+1 contains exactly n distinct prime factors of the form m^2+1 or 0 if no such k exists.

Original entry on oeis.org

1, 3, 13, 183, 2843, 41323, 57109753, 1929510527, 760999599793
Offset: 1

Author

Michel Lagneau, Jul 24 2025

Keywords

Examples

			a(4)=183 because the prime factors of 183^2+1 are {2, 5, 17, 197} are of the form m^2+1 with m = 1, 2, 4 and 14.
		

Programs

  • Maple
    with(numtheory):nn:=10^6:
    for n from 0 to 6 do :
     ii :=0 :
     for k from 0 to nn while(ii=0) do :
       d:=factorset(k^2+1):n0:=nops(d):it:=0:
        for i from 1 to n0 do:
          c:=d[i]-1:if sqrt(c) = floor(sqrt(c)) then it:=it+1:else fi:
        od:
         if it =n then ii :=1 :printf (`%d %d \n`,n,k):
          else
         fi :
     od:
    od :
  • Mathematica
    a[n_]:=Module[{k=0},Until[PrimeNu[k^2+1]==n&&AllTrue[Sqrt[First/@FactorInteger[k^2+1]-1],IntegerQ],k++];k];Array[a,6] (* James C. McMahon, Jul 25 2025 *)

Extensions

a(7) from Giovanni Resta, Jul 24 2025
a(8)-a(9) from David A. Corneth, Jul 24 2025

A383644 a(n) is the number of zeros in the left half-plane of the Maclaurin polynomial of degree n for exp(z).

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 5, 6, 7, 6, 7, 8, 9, 10, 11, 10, 11, 12, 13, 14, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 24, 23, 24, 25, 26, 27, 26, 27, 28, 29, 30, 29, 30, 31, 32, 33, 32, 33, 34, 35, 36, 37, 36, 37, 38, 39, 40, 39, 40, 41, 42, 43, 42, 43, 44
Offset: 1

Author

Michel Lagneau, May 03 2025

Keywords

Comments

The Maclaurin polynomial of degree n for exp(z) is P(n,z) = Sum_{i=0..n} z^i/i!
The number of zeros in the right half-plane is equal to n - a(n) because we do not observe any purely imaginary roots.

Examples

			a(4)= 4 because P(4,z) = 1 + z/1! + z^2/2! + z^3/3! + z^4/4! with 4 roots in the left half-plane:
z1 = -1.729444231-.8889743761*i,
z2 = -1.729444231+.8889743761*i,
z3 = -.2705557689-2.504775904*i,
z4 = -.2705557689+2.504775904*i
		

Crossrefs

Programs

  • Maple
    A:=proc(n) local P, m, y, it:
      it:=0:P:=add(x^i/i!,i=0..n):
       y:=[fsolve(expand(P), x, complex)]:
        for m from 1 to nops(y) do:
         if Re(y[m])<0 then
          it:=it+1:else fi:
        od: A(n):=it:end proc:
    seq(A(n), n=1..70);

A383747 Consider the polynomial P(m,z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2) < ... < d(r) are the r divisors of m. The sequence lists the numbers m such that P(m,z) contains at least three zeros of the form -1/q, i/q, -i/q, for some integer q, i = sqrt(-1).

Original entry on oeis.org

8, 27, 88, 104, 125, 128, 136, 152, 184, 232, 248, 296, 328, 343, 344, 376, 424, 472, 488, 536, 568, 584, 632, 664, 712, 776, 783, 808, 824, 837, 856, 872, 904, 968, 999, 1016, 1048, 1096, 1107, 1112, 1161, 1192, 1208, 1256, 1269, 1304, 1331, 1336, 1352, 1384, 1431
Offset: 1

Author

Michel Lagneau, May 08 2025

Keywords

Comments

Subsequence of A291127.
The corresponding integers q are in A383748.

Examples

			  n   m  P(m,z)                                  3 zeros of P(m,z)
  1   8  1+2z+4z^2+8z^3                          -1/2, -i/2, i/2
  2  27  1+3z+9z^2+27z^3                         -1/3, -i/3, i/3
  3  88  1+2z+4z^2+8z^3+11z^4+22z^5+44z^6+88z^7  -1/2, -i/2, i/2
		

Crossrefs

Programs

  • Maple
    with(numtheory) :
    A:=proc(n) local P, Q, i, q, d, ii:
    d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)):
    ii:=0:for q from 1 to 10^4 while (ii=0) do:
    Q:=(x+1/q)*(x^2+1/q^2):
    if divide(P,Q,'R') then ii:=1:
    A(n):=n:else fi:od:end proc:
    seq(A(n), n=1..2500);

A383748 a(n) = q is the smallest integer, such that the numbers -1/q, i/q, -i/q with i = sqrt(-1), are three zeros of the polynomial P(A783747(n),z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2), ..., < d(r) are the r divisors of A383747(n).

Original entry on oeis.org

2, 3, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 11, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 13, 2, 3, 2, 2, 2, 2, 3, 2, 2
Offset: 1

Author

Michel Lagneau, May 08 2025

Keywords

Examples

			 n  q  m = A783747(n)         P(m,z)          3 zeros of P(m,z)
 1  2       8          1+2z+4z^2+8z^3         -1/2, -i/2, i/2
 2  3      27          1+3z+9z^2+27z^3        -1/3, -i/3, i/3
 3  2      88          1+2z+4z^2+8z^3+11z^4+  -1/2, -i/2, i/2
                       22z^5+44z^6+88z^7
		

Crossrefs

Programs

  • Maple
    with(numtheory) :
    A:=proc(n) local P, Q, i, q, d, ii:
    d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)):
    ii:=0:for q from 1 to n while (ii=0) do:
    Q:=(x+1/q)*(x^2+1/q^2):
    if divide(P,Q,'R') then ii:=1:
    A(n):=q:else fi:od:end proc:
    seq(A(n), n=1..2500);

A383109 Consider the isosceles triangle whose vertices are the Gaussian integers z1=0, z2 = x+i*y, z3=x-i*y. The sequence lists the pairs of positive integer foci (f_i, f_j), f_i < f_j of Steiner inellipse for some z2, z3.

Original entry on oeis.org

3, 5, 6, 10, 9, 15, 13, 15, 12, 20, 15, 25, 18, 30, 15, 37, 15, 41, 17, 39, 21, 35, 26, 30, 24, 40, 27, 45, 25, 51, 30, 50, 39, 45, 33, 55, 36, 60, 29, 75, 30, 74, 39, 65, 51, 53, 30, 82, 34, 78, 42, 70, 52, 60, 45, 75, 39, 85, 48, 80, 51, 85, 65, 75, 54, 90, 61
Offset: 1

Author

Michel Lagneau, Apr 16 2025

Keywords

Comments

With z1=0, z2 = x+i*y, z3=x-i*y and P(z)=(z-z1)*(z-z2)*(z-z3) we obtain:
(1) P(z) = z^3 -2x*z^2 + (x^2+y^2)*z.
(2) P’(z)=3*z^2-4*x*z+ x^2+y^2.
The two zeros of P’(z) are: (2*x-sqrt(x^2-3*y^2))/3 and (2*x+sqrt(x^2-3*y^2))/3.

Examples

			(a(1),a(2)) = (3,5) because from (2) with (x,y) = (6,3), the two zeros of P’(z) are: (2*6-sqrt(6^2-3*3^2))/3 = (12 - sqrt(9))/3 = 3 and (2*6+sqrt(6^2-3*3^2))/3 = (12 + sqrt(9))/3 = 5. The two foci are integers.
(a(7),a(8)) = (13,15) because from (2) with (x,y) = (21,12), the two zeros of P’(z) are (2*21-sqrt(21^2-3*12^2))/3 = (42 - sqrt(9))/3 = 13 and (2*21+sqrt(21^2-3*12^2))/3 = (12 + sqrt(9))/3 = 15. The two foci are integers.
		

References

  • Beniamin Bogosel, A Geometric Proof of the Siebeck-Marden Theorem, Amer. Math. Monthly, vol. 125, no 4, 2017, p. 459-463.
  • A. Eydelzon, On a New Property of the Steiner Inellipse, Amer. Math. Monthly, vol. 127, no 10, 2020, p. 933-935.

Programs

  • Maple
    nn:=200:
    for x from 1 to nn do:
    for y from 1 to nn while(x^2>3*y^2) do:
     u:=sqrt(x^2+y^2):v:=2*b:s:=sqrt(x^2+y^2)+y:
      z1:=(2*x-sqrt(x^2-3*y^2))/3:z2:=(2*x+sqrt(x^2-3*y^2))/3:
      if z1=floor(z1) and z2=floor(z2) then printf(`%d, `,z1):
       printf(`%d, `,z2):
      else fi:
      od:
    od:

A382108 Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 3, 4, 3, 6, 5, 6, 5, 6, 7, 8, 9, 10, 3, 8, 7, 10, 9, 10, 7, 10, 11, 8, 11, 12, 9, 10, 11, 14, 11, 14, 11, 12, 13, 12, 13, 12, 15, 12, 7, 18, 19, 16, 11, 14, 11, 14, 11, 18, 11, 18, 15, 18, 19, 22, 7, 16, 21, 20, 17, 22, 15, 18, 21, 20, 25, 20
Offset: 0

Author

Michel Lagneau, Mar 15 2025

Keywords

Examples

			a(4)=4 because P(4,z)= 4 + 5*z -5*z^3 -4*z^4  with 4 roots z1, z2, z2, z4 on the unit circle : z1 = -1, z2 = +1, z3 = -.625000 -.7806247*i, z4 = -.625000 +.7806247*i.
a(6)=6 because P(6,z)= 6 + 14*z +14*z^2 -14*z^4-14*z^5-6z^6  with 6 roots on the unit circle:
x1 = -1
x2 = +1
x2 = -.6666666667 - .7453559925*i
x3 = -.6666666667 + .7453559925*i
x5 = -.500000000 - .8660254038*i
x6 = -.500000000 + .8660254038*i
		

Crossrefs

Cf. A007318, A214292, A382019 (on and inside the circle).

Programs

  • Maple
    A382108:=proc(n) local m,y,it:
    y:=[fsolve(add((binomial(n+1,k+1)-binomial(n+1,k))*x^k,k=0..n),x,complex)]:it:=0:
     for m from 1 to nops(y) do:
        if ((Re(y[m]))^2+(Im(y[m]))^2)=1
         then it:=it+1:
         else
        fi:
       od:
        A382108(n):=it:end proc:seq(A382108(n),n=1..80);

A382019 Number of zeros (counted with multiplicity) inside and on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 17, 18, 17, 18, 19, 20, 21, 22, 21, 22, 23, 24, 25, 26, 25, 26, 27, 28, 29, 30, 29, 30, 31, 32, 33, 34, 33, 34, 35, 36, 37, 38, 37, 38, 39, 40, 41, 42, 41, 42, 43, 44, 45, 46, 45, 46, 47
Offset: 0

Author

Michel Lagneau, Mar 12 2025

Keywords

Comments

The polynomial is P(n,z) = z^(n+1) - ((z-1)*(z+1)^(n+1) +1)/z.
A root z (real or complex) is in or on the unit circle when its magnitude abs(z) <= 1.

Examples

			a(4)=4 because P(4,z)= 4 + 5*z -5*z^3 -4*z^4  with 4 roots z1, z2, z2, z4 on the unit circle : z1 = -1, z2 = +1, z3 = -.625000 -.7806247*i, z4 = -.625000 +.7806247*i.
a(6)=6 because P(6,z)= 6 + 14*z +14*z^2 -14*z^4-14*z^5-6z^6  with 6 roots on the unit circle:
  z1 = -1,
  z2 = +1,
  z3 = -.6666666667 - .7453559925*i,
  z4 = -.6666666667 + .7453559925*i,
  z5 = -.500000000 - .8660254038*i,
  z6 = -.500000000 + .8660254038*i.
		

Crossrefs

Programs

  • Maple
    A382019:=proc(n) local m,y,it:
    y:=[fsolve(add((binomial(n+1,k+1)-binomial(n+1,k))*x^k,k=0..n),x,complex)]:it:=0:
     for m from 1 to nops(y) do:
              if ((Re(y[m]))^2+(Im(y[m]))^2)<=1
              then
             it:=it+1:else fi:
       od: A382019(n):=it:end proc:
    seq(A382019(n),n=1..70);

A381604 Least number k such that A381596(k) = n.

Original entry on oeis.org

1, 2, 5, 10, 17, 116, 501, 512
Offset: 0

Author

Michel Lagneau, Mar 01 2025

Keywords

Comments

Least number k such that the number of real zeros of the polynomial P(k,z) = Sum_{i=1..k} A001223(i)*z^(i-1) is equal to n, where A001223(i) = differences between consecutive primes.

Examples

			a(1) = 2 because P(2,z) = Sum_{i=1..2} A001223(i)*z^(i-1) = 1 + 2*z = 0 for z = -1/2.
a(2) = 5 because P(5,z) = Sum_{i=1..5} A001223(i)*z^(i-1) = 1 + 2*z + 2*z^2 + 4*z^3 + 2*z^4 = 0 for z = -1.6499348..., -0.5606729...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 0 to 20 do:
    ii:=0:
      for k from 1 to 10^3 while(ii=0) do :
        P:=add((ithprime(i+1)-ithprime(i))*x^(i-1),i=1..k):
        y:=fsolve(P,x,real):z:=evalf({%}):y:=nops(z):
         if y=n
         then
          ii:=1:printf (`%d %d \n`,n,k):
           else
         fi:
      od:
    od:

A381596 a(n) = number of real zeros (counted with multiplicity) of the polynomial P(n,z) = Sum_{i=1..n} A001223(i)*z^(i-1) where A001223(i) = differences between consecutive primes.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Author

Michel Lagneau, Mar 01 2025

Keywords

Examples

			a(4) = 1 because P(4,z) = Sum_{i=1..4} A001223(i)*z^(i-1) = 1 + 2*z + 2*z^2 + 4*z^3 = (2*z + 1)*(2*z^2 + 1) = 0 for z = -1/2.
a(5) = 2 because P(5,z) = Sum_{i=1..5} A001223(i)*z^(i-1) = 1 + 2*z + 2*z^2 + 4*z^3 + 2*z^4 = 0 for z = -1.6499348..., -0.5606729...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 100 do :
      P:=add((ithprime(i+1)-ithprime(i))*x^(i-1),i=1..n):
       y:=fsolve(P,x,real):
       z:=evalf({%}):k:=nops(z):
       printf(`%d, `,k):
    od:
  • PARI
    a(n) = my(v=primes(n+1)); #polrootsreal(sum(i=1, n, (v[i+1]-v[i])*z^(i-1))); \\ Michel Marcus, Mar 01 2025

A381097 Consider the polynomial P(m,z) = Sum_{i=1..k} d(i)*z^(i-1) where d(1), d(2), ..., d(k) are the k divisors of m. The sequence lists the numbers m such that P(m,z) is irreducible.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 36, 37, 40, 41, 43, 45, 47, 48, 49, 53, 56, 59, 60, 61, 63, 64, 67, 70, 71, 72, 73, 79, 80, 81, 83, 84, 89, 90, 96, 97, 101, 103, 105, 107, 108, 109, 112, 113, 120, 121, 126, 127, 131, 132, 135
Offset: 1

Author

Michel Lagneau, Feb 14 2025

Keywords

Comments

The squares>1 and the prime numbers are in the sequence.

Examples

			The prime numbers q are in the sequence because P(q,z) = qz + 1.
6 is not in the sequence because P(6,z)=(2z+1)*(3z^2+1).
The following table gives the irreducible polynomials.
+-----------------------------------------------------------+
|  m |                 P(m,z)                               |
+-----------------------------------------------------------+
|  4 | 1 + 2z + 4z^2                                        |
+-----------------------------------------------------------+
|  9 | 1 + 3z + 9z^2                                        |
+-----------------------------------------------------------+
| 12 | 1 + 2z + 3z^2 + 4z^3 + 6z^4 + 12z^5                  |
+-----------------------------------------------------------+
| 16 | 1 + 2z + 4z^2 + 8z^3 + 16z^4                         |
+----------------------------+------------------------------+
| 24 | 1 + 2z + 3z^2 + 4z^3 + 6z^4 + 8z^5 + 12z^6 + 24z^7   |
+-----------------------------------------------------------+
| 25 | 1 + 5z + 25z^2                                       |
+-----------------------------------------------------------+
| 30 | 1 + 2z + 3z^2 + 5z^3 + 6z^4 + 10z^5 + 15z^6 + 30z^7  |
+-----------------------------------------------------------+
		

Crossrefs

Cf. A291127.

Programs

  • Maple
    with(numtheory):
    for n from 1 to 135 do :
      it:=0:d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)):
       y:=fsolve(P,x,complex):z:=evalf({%}):k:=nops(z):
        if irreduc(P) then printf(`%d, `,n):else fi:
    od:
  • PARI
    isok(n) = my(d=divisors(n)); polisirreducible(sum(i=1, #d, d[i]*z^(i-1))); \\ Michel Marcus, Feb 14 2025