cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A033503 First differences of A046025.

Original entry on oeis.org

5, 29, 10, 6, 4, 1, 44, 21, 74, 11, 10, 39, 21, 94, 10, 46, 80, 4, 1, 199, 31, 59, 25, 46, 59, 45, 50, 35, 55, 25, 21, 109, 10, 1, 30, 25, 25, 4, 16, 39, 1, 20, 49, 25, 181, 109, 70, 10, 46, 109, 25, 21, 105, 44, 11, 10, 15, 95, 59, 95, 45, 6, 85, 25, 30, 165, 84, 60, 55, 56
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[3500],And@@PrimeQ[{6,12,18}#+1]&]] (* Harvey P. Dale, May 26 2014 *)

A033502 Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1), where 6*k+1, 12*k+1 and 18*k+1 are all primes.

Original entry on oeis.org

1729, 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, 11346205609, 13079177569, 21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409, 172018713961, 173032371289, 464052305161
Offset: 1

Views

Author

Keywords

Comments

Also called Chernick's Carmichael numbers. The polynomial (6*k+1)*(12*k+1)*(18*k+1) is the simplest Chernick polynomial. [Named after the American physicist and mathematician Jack Chernick (1911-1971). - Amiram Eldar, Jun 15 2021]
The first term, 1729, is the Hardy-Ramanujan number and the smallest primary Carmichael number (A324316).
Dickson's conjecture implies that this sequence is infinite, as pointed out by Chernick.
All terms of this sequence are primary Carmichael numbers (A324316) having the following remarkable property. Let m be a term of A033502. For each prime divisor p of m, the sum of the base-p digits of m equals p. This property also holds for "almost all" 3-term Carmichael numbers (A087788), since they can be represented by certain Chernick polynomials, whose values obey a strict s-decomposition (A324460) besides certain exceptions, see Kellner 2019. - Bernd C. Kellner, Aug 03 2022

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A13, pp. 50-53.

Crossrefs

Values of k are given by A046025. Subsequence of A002997, A087788, and A324316.

Programs

  • Magma
    [n : k in [1..710] | IsPrime(a) and IsPrime(b) and IsPrime(c) and IsOne(n mod CarmichaelLambda(n)) where n is a*b*c where a is 6*k+1 where b is 12*k+1 where c is 18*k+1]; // Arkadiusz Wesolowski, Oct 29 2013
  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; (6# + 1)(12# + 1)(18# + 1) & /@
    Select[ Range@ 1000, PrimeQ[6# + 1] && PrimeQ[12# + 1] && PrimeQ[18# + 1] && CarmichaelNbrQ[(6# + 1)(12# + 1)(18# + 1)] &]

Extensions

Definition corrected (thanks to Umberto Cerruti) by Bruno Berselli, Jan 18 2013

A064238 Values of m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,3.

Original entry on oeis.org

6, 36, 210, 270, 306, 330, 336, 600, 726, 1170, 1236, 1296, 1530, 1656, 2220, 2280, 2556, 3036, 3060, 3066, 4260, 4446, 4800, 4950, 5226, 5580, 5850, 6150, 6360, 6690, 6840, 6966, 7620, 7680, 7686, 7866, 8016, 8166, 8190, 8286, 8520, 8526, 8646, 8940, 9090
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).
All m's are multiples of 6 and m, 2m and 3m divide m(2m+1)(3m+1)-1 automatically.

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Programs

  • Maple
    q:= n-> andmap(isprime, [6*j*n+1$j=1..3]):
    map(x-> 6*x, select(q, [$1..2000]))[];  # Alois P. Heinz, Jun 25 2023
  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda[n]] == 1; Select[ Range@ 9000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[3# + 1] && CarmichaelNbrQ[(# + 1)(2 # + 1)(3 # + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

a(n) = 6 * A046025(n).

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A206024 Numbers k such that 6k+1, 12k+1, 18k+1 and 36k+1 are all primes.

Original entry on oeis.org

1, 45, 56, 121, 206, 255, 380, 506, 511, 710, 871, 1025, 1421, 1515, 1696, 2191, 2571, 2656, 2681, 3341, 3566, 3741, 3796, 3916, 3976, 4235, 4340, 4426, 5645, 5875, 6006, 7066, 7616, 7826, 7976, 8900, 8925, 8976, 9025, 9186, 9600, 9761, 10920, 11301, 11385
Offset: 1

Views

Author

Keywords

Comments

(6k+1)*(12k+1)*(18k+1)*(36k+1) is a Carmichael number for all k in this sequence. - José María Grau Ribas, Feb 06 2012

Crossrefs

Programs

  • GAP
    Filtered([1..12000],n->IsPrime(6*n+1) and IsPrime(12*n+1) and IsPrime(18*n+1) and IsPrime(36*n+1)); # Muniru A Asiru, May 27 2018
  • Magma
    [n: n in [0..2*10^4] | IsPrime(6*n+1) and IsPrime(12*n+1) and IsPrime(18*n+1) and  IsPrime(36*n+1)]; // Vincenzo Librandi, Apr 15 2015
    
  • Maple
    select(n->isprime(6*n+1) and isprime(12*n+1) and isprime(18*n+1) and isprime(36*n+1),[$1..12000]); # Muniru A Asiru, May 27 2018
  • Mathematica
    Select[Range[20000], PrimeQ[6 # + 1] && PrimeQ[12 # + 1] && PrimeQ[18 # + 1] && PrimeQ[36 # + 1] &]
    Select[Range[12000],And@@PrimeQ[{6,12,18,36}#+1]&] (* Harvey P. Dale, Mar 25 2013 *)
  • PARI
    forprime(p=2,1e5,if(p%6!=1,next);if(isprime(2*p-1)&&isprime(3*p-2)&&isprime(6*p-5),print1(p\6", "))) \\ Charles R Greathouse IV, Feb 06 2012
    
  • PARI
    is(m,c=36)=!until(bittest(c\=2,0)&&9>c+=3, isprime(m*c+1)||return) \\ M. F. Hasler, Apr 15 2015
    

A372188 Numbers m such that 18*m + 1, 36*m + 1, 108*m + 1, and 162*m + 1 are all primes.

Original entry on oeis.org

1, 71, 155, 176, 241, 346, 420, 540, 690, 801, 1145, 1421, 1506, 2026, 2066, 3080, 3235, 3371, 3445, 3511, 3640, 4746, 4925, 5681, 5901, 6055, 6520, 7931, 8365, 8970, 9006, 9556, 9685, 10186, 11396, 11750, 11935, 12055, 12666, 13205, 13266, 13825, 13881, 14606
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (18*m + 1) * (36*m + 1) * (108*m + 1) * (162*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form W_4(3*m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 12490201, 288503529142321, 6548129556412321, ...

Examples

			1 is a term since 18*1 + 1 = 19, 36*1 + 1 = 37, 108*1 + 1 = 109, and 162*1 + 1 = 163 are all primes.
71 is a term since 18*71 + 1 = 1279, 36*71 + 1 = 2557, 108*71 + 1 = 7669, and 162*71 + 1 = 11503 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{18, 36, 108, 162}, PrimeQ[#*n + 1] &]; Select[Range[15000], q]
  • PARI
    is(n) = isprime(18*n + 1) && isprime(36*n + 1) && isprime(108*n + 1) && isprime(162*n + 1);

A372186 Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.

Original entry on oeis.org

333, 741, 1659, 1749, 2505, 2706, 2730, 4221, 4437, 4851, 5625, 6447, 7791, 7977, 8229, 8250, 9216, 10833, 12471, 13950, 14028, 15147, 16002, 17667, 18207, 18246, 19152, 20517, 23400, 23421, 23961, 25689, 26247, 28587, 28608, 30363, 31584, 34167, 36330, 36378
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (20*m + 1) * (80*m + 1) * (100*m + 1) * (200*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{4,4}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 393575432565765601, 9648687289456956001, 242412946401534283201, ...

Examples

			333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
  • PARI
    is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);

A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.

Original entry on oeis.org

95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (72*m + 1) * (576*m + 1) * (648*m + 1) * (1296*m + 1) * (2592*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{5,5}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 698669495582067436250881, 50411423376758357271937215361, 57292035175893741987253427965441, ...

Examples

			95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
  • PARI
    is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);

A067199 Integers k such that k*28*c + 1 is prime for c = 1, 2, 4, 7 and 14.

Original entry on oeis.org

2136, 2211, 4071, 5106, 5430, 9000, 10656, 17655, 18315, 20220, 20805, 21381, 22356, 22920, 23025, 29616, 37050, 39261, 45795, 49920, 55686, 60435, 62205, 64380, 79356, 81345, 91455, 94800, 95910, 96285, 105336, 108585, 111885, 118626
Offset: 1

Views

Author

Frank Ellermann, Feb 19 2002

Keywords

Comments

The product of the 5 primes is a Carmichael number. 28=1+2+4+7+14.

Examples

			2136 results in Carmichael number 599966117492747584686619009.
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, exercise 8.4.

Crossrefs

Cf. A002997, A046025 (based on 6 instead of 28, exercise 8.3 in Davenport), A112428.

Programs

  • Mathematica
    aQ[n_] := AllTrue[{1, 2, 4, 7, 14}, PrimeQ[28 * n * # + 1] &]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 19 2019 *)

Extensions

Offset corrected by Amiram Eldar, Sep 19 2019

A101186 Values of k for which 7m+1, 8m+1 and 11m+1 are prime, with m = 1848k + 942.

Original entry on oeis.org

13, 123, 218, 223, 278, 411, 513, 551, 588, 733, 743, 796, 856, 928, 1168, 1226, 1263, 1401, 1533, 1976, 1981, 2013, 2096, 2138, 2241, 2376, 2556, 2676, 2703, 3626, 3703, 3718, 3971, 4008, 4121, 4138, 4163, 4188, 4211, 4313, 4423, 4653, 4656, 4901, 5018
Offset: 1

Views

Author

Gerard P. Michon, Dec 03 2004

Keywords

Comments

The number (7m+1)(8m+1)(11m+1) is a 3-factor Carmichael number if and only if m is equal to 1848k+942 with k in this sequence. The sequence includes the value k = 10^329 - 4624879 which yields a 1000-digit Carmichael number with three prime factors of 334 digits each. Other Carmichael numbers of the same form would necessarily have 4 prime factors or more; the smallest such example is 3664585=127*(7*29)*199, for m=18.

Examples

			a(1)=13 because k=13 corresponds to m=24966, which yields a product of three primes (7m+1)(8m+1)(11m+1) equal to the Carmichael number 9585921133193329. (Among all Carmichael numbers with 16 or fewer digits, as first listed by Richard G. E. Pinch, this one features the largest "least prime factor".)
		

Crossrefs

Cf. A002997 (Carmichael numbers), A046025.

Programs

  • Magma
    [k:k in [1..5100]| forall{s:s in [7,8,11]|IsPrime(m*s+1) where m is 1848*k+942}]; // Marius A. Burtea, Nov 01 2019
    
  • Maple
    filter:= proc(n) local m;
      m:= 1848*n+942;
      andmap(isprime,[7*m+1,8*m+1,11*m+1])
    end proc:
    select(filter, [$1..10000]); # Robert Israel, May 14 2019
  • Mathematica
    q[k_] := Module[{m = 1848*k + 942}, PrimeQ[7*m + 1] && PrimeQ[8*m + 1] && PrimeQ[11*m + 1]]; Select[Range[6000], q] (* Amiram Eldar, Apr 27 2024 *)
  • PARI
    is(k) = {my(m = 1848*k + 942); isprime(7*m + 1) && isprime(8*m + 1) && isprime(11*m + 1);} \\ Amiram Eldar, Apr 27 2024

A101187 Values of m for which (6m+1)(12m+1)(18m+1) is a Carmichael number.

Original entry on oeis.org

1, 5, 6, 11, 15, 22, 33, 35, 45, 51, 55, 56, 61, 85, 96, 100, 103, 105, 115, 121, 195, 206, 216, 225, 242, 255, 276, 370, 380, 426, 455, 470, 506, 510, 511, 550, 561, 588, 609, 628, 661, 700, 710, 741, 800, 805, 825, 871, 920, 930, 975, 1025, 1060, 1115, 1140
Offset: 1

Views

Author

Gerard P. Michon, Dec 03 2004

Keywords

Comments

A046025 is a subsequence giving the values of m for which the three factors are prime, which is a sufficient condition for the product (6m+1)(12m+1)(18m+1) to be a Carmichael number.

Crossrefs

Cf. A002997 (Carmichael numbers), A046025 (subsequence), A101186.
See also A065703.

Programs

  • Magma
    [n: n in [1..1200] | IsOne(t mod CarmichaelLambda(t)) where t is (6*n+1)*(12*n+1)*(18*n+1)]; // Bruno Berselli, Jan 22 2013
  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1200, CarmichaelNbrQ[(6# + 1)(12# + 1)(18# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)
Showing 1-10 of 17 results. Next