cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372190 Number of terms of A372188 that do not exceed 10^n.

Original entry on oeis.org

1, 2, 10, 33, 149, 824, 5116, 32077, 213075, 1463213, 10397977, 75903023
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Crossrefs

A372186 Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.

Original entry on oeis.org

333, 741, 1659, 1749, 2505, 2706, 2730, 4221, 4437, 4851, 5625, 6447, 7791, 7977, 8229, 8250, 9216, 10833, 12471, 13950, 14028, 15147, 16002, 17667, 18207, 18246, 19152, 20517, 23400, 23421, 23961, 25689, 26247, 28587, 28608, 30363, 31584, 34167, 36330, 36378
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (20*m + 1) * (80*m + 1) * (100*m + 1) * (200*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{4,4}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 393575432565765601, 9648687289456956001, 242412946401534283201, ...

Examples

			333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
  • PARI
    is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);

A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.

Original entry on oeis.org

95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (72*m + 1) * (576*m + 1) * (648*m + 1) * (1296*m + 1) * (2592*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{5,5}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 698669495582067436250881, 50411423376758357271937215361, 57292035175893741987253427965441, ...

Examples

			95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
  • PARI
    is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);

A372238 Least number m such that 9*k*m+1 is prime for k=1..n.

Original entry on oeis.org

2, 2, 4, 170, 9860, 23450, 56980, 56980, 6723767050, 48276858630, 77460393371130, 97581361797920, 97581361797920, 1269928100726715430
Offset: 1

Views

Author

Jean-Marc Rebert, Apr 23 2024

Keywords

Examples

			a(1) = 2, because 9*1*2 + 1 = 19 is prime and no lesser number has this property.
		

Crossrefs

Programs

  • Mathematica
    p[m_, n_] := AllTrue[Range[n], PrimeQ[9*#*m + 1] &];
    a[n_] := a[n] = Module[{m = 1}, While[! p[m, n], m++]; m]
    Table[a[n], {n, 1, 9}] (* Robert P. P. McKone, May 02 2024 *)
  • PARI
    is(n,m)=my(u=vector(n,k,9*k*m+1));for(i=1,n,if(!isprime(u[i]),return(0)));1
    a(n)=my(pas=1);if(n<15,if(n>2,pas=factorback(primes(primepi(n)));pas/=3;my(m=pas));forstep(m=pas,+oo,pas,if(is(n,m),return(m))))
    
  • PARI
    See PARI link

Formula

If A088250(n) is divisible by 9, then a(n) = A088250(n) / 9. - Jason Yuen, Apr 25 2024

Extensions

a(11)-a(13) from David A. Corneth, Apr 24 2024
a(14) from Jason Yuen, Apr 25 2024
Showing 1-4 of 4 results.