A319008 Let k = A000396(n) be the n-th perfect number, a(n) is the least number m such that k*d*m + 1 is prime for all of the proper divisors d of k so their product is a Carmichael number.
1, 2136, 13494274080, 216818853118725
Offset: 1
Examples
28 = 1 + 2 + 4 + 7 + 14 is the second perfect number. 2136 is the least number m such that 28*1*333 + 1 = 59809, 28*2*2136 + 1 = 119617, 28*4*2136 + 1 = 239233, 28*7*2136 + 1 = 418657 and 28*14*2136 + 1 = 837313 are all primes, therefore 59809*119617*239233*418657*837313 = 599966117492747584686619009 is a Carmichael number.
References
- Harold Davenport, The Higher Arithmetic, Cambridge University Press, 7th ed., 1999, exercise 8.4.
- Harvey Dubner, Carmichael numbers and Egyptian fractions, Mathematica japonicae, Vol. 43, No. 2 (1996), pp. 411-419.
Links
- Jack Chernick, On Fermat's simple theorem, Bulletin of the American Mathematical Society, Vol. 45, No. 4 (1939), pp. 269-274.
- Claude Goutier, De l'utilité d'une vieille curiosité grecque, Crux Mathematicorum, Vol. 46, No. 8 (2020), pp. 397-403.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 59996...19009 (27-digits).
- Erik Lieuwens, Fermat pseudo primes, Doctoral Thesis, Delft University of Technology, 1971, pp. 29-30.
- Carlos Rivera, Puzzle 171. Perfect & Carmichael numbers, The Prime Puzzles & Problems Connection.
Programs
-
Mathematica
ms = {2, 3, 5, 7, 13}; ns = Length[ms]; M[p_] := 2^(p - 1)*(2^p - 1); L[m_] := Module[{}, d = Most[Divisors[m]]*m; aQ[n_] := AllTrue[d*n + 1, PrimeQ]; n=1; While[!aQ[n], n++];n]; s={}; Do[m = M[ms[[k]]]; b = L[m]; AppendTo[s, b], {k, 1, ns}]; s
Comments