A372188
Numbers m such that 18*m + 1, 36*m + 1, 108*m + 1, and 162*m + 1 are all primes.
Original entry on oeis.org
1, 71, 155, 176, 241, 346, 420, 540, 690, 801, 1145, 1421, 1506, 2026, 2066, 3080, 3235, 3371, 3445, 3511, 3640, 4746, 4925, 5681, 5901, 6055, 6520, 7931, 8365, 8970, 9006, 9556, 9685, 10186, 11396, 11750, 11935, 12055, 12666, 13205, 13266, 13825, 13881, 14606
Offset: 1
1 is a term since 18*1 + 1 = 19, 36*1 + 1 = 37, 108*1 + 1 = 109, and 162*1 + 1 = 163 are all primes.
71 is a term since 18*71 + 1 = 1279, 36*71 + 1 = 2557, 108*71 + 1 = 7669, and 162*71 + 1 = 11503 are all primes.
-
q[n_] := AllTrue[{18, 36, 108, 162}, PrimeQ[#*n + 1] &]; Select[Range[15000], q]
-
is(n) = isprime(18*n + 1) && isprime(36*n + 1) && isprime(108*n + 1) && isprime(162*n + 1);
A372186
Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.
Original entry on oeis.org
333, 741, 1659, 1749, 2505, 2706, 2730, 4221, 4437, 4851, 5625, 6447, 7791, 7977, 8229, 8250, 9216, 10833, 12471, 13950, 14028, 15147, 16002, 17667, 18207, 18246, 19152, 20517, 23400, 23421, 23961, 25689, 26247, 28587, 28608, 30363, 31584, 34167, 36330, 36378
Offset: 1
333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
-
q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
-
is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);
A372187
Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.
Original entry on oeis.org
95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1
95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
-
q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
-
is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);
A382835
Array read by ascending antidiagonals: A(n,k) = (6*n + 1)*(12*n + 1)*Product_{i=0..k-2} (9*2^i*n + 1) with k >= 2.
Original entry on oeis.org
1, 91, 1, 325, 1729, 1, 703, 12025, 63973, 1, 1225, 38665, 877825, 4670029, 1, 1891, 89425, 4214485, 127284625, 677154205, 1, 2701, 172081, 12966625, 914543245, 36785256625, 195697565245, 1, 3655, 294409, 31146661, 3747354625, 395997225085, 21225093072625, 112917495146365, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, ...
91, 1729, 63973, 4670029, 677154205, ...
325, 12025, 877825, 127284625, 36785256625, ...
703, 38665, 4214485, 914543245, 395997225085, ...
1225, 89425, 12966625, 3747354625, 2162223618625, ...
1891, 172081, 31146661, 11243944621, 8106884071741, ...
2701, 294409, 63886753, 27662964049, 23928463902385, ...
...
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.
-
A[n_,k_]:=(6n+1)(12n+1)Product[9*2^i*n+1,{i,k-2}];Table[A[n-k,k],{n,0,9},{k,2,n}]//Flatten
Showing 1-4 of 4 results.
Comments