cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372188 Numbers m such that 18*m + 1, 36*m + 1, 108*m + 1, and 162*m + 1 are all primes.

Original entry on oeis.org

1, 71, 155, 176, 241, 346, 420, 540, 690, 801, 1145, 1421, 1506, 2026, 2066, 3080, 3235, 3371, 3445, 3511, 3640, 4746, 4925, 5681, 5901, 6055, 6520, 7931, 8365, 8970, 9006, 9556, 9685, 10186, 11396, 11750, 11935, 12055, 12666, 13205, 13266, 13825, 13881, 14606
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (18*m + 1) * (36*m + 1) * (108*m + 1) * (162*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form W_4(3*m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 12490201, 288503529142321, 6548129556412321, ...

Examples

			1 is a term since 18*1 + 1 = 19, 36*1 + 1 = 37, 108*1 + 1 = 109, and 162*1 + 1 = 163 are all primes.
71 is a term since 18*71 + 1 = 1279, 36*71 + 1 = 2557, 108*71 + 1 = 7669, and 162*71 + 1 = 11503 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{18, 36, 108, 162}, PrimeQ[#*n + 1] &]; Select[Range[15000], q]
  • PARI
    is(n) = isprime(18*n + 1) && isprime(36*n + 1) && isprime(108*n + 1) && isprime(162*n + 1);

A372186 Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.

Original entry on oeis.org

333, 741, 1659, 1749, 2505, 2706, 2730, 4221, 4437, 4851, 5625, 6447, 7791, 7977, 8229, 8250, 9216, 10833, 12471, 13950, 14028, 15147, 16002, 17667, 18207, 18246, 19152, 20517, 23400, 23421, 23961, 25689, 26247, 28587, 28608, 30363, 31584, 34167, 36330, 36378
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (20*m + 1) * (80*m + 1) * (100*m + 1) * (200*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{4,4}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 393575432565765601, 9648687289456956001, 242412946401534283201, ...

Examples

			333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
  • PARI
    is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);

A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.

Original entry on oeis.org

95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (72*m + 1) * (576*m + 1) * (648*m + 1) * (1296*m + 1) * (2592*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{5,5}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 698669495582067436250881, 50411423376758357271937215361, 57292035175893741987253427965441, ...

Examples

			95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
  • PARI
    is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);

A382835 Array read by ascending antidiagonals: A(n,k) = (6*n + 1)*(12*n + 1)*Product_{i=0..k-2} (9*2^i*n + 1) with k >= 2.

Original entry on oeis.org

1, 91, 1, 325, 1729, 1, 703, 12025, 63973, 1, 1225, 38665, 877825, 4670029, 1, 1891, 89425, 4214485, 127284625, 677154205, 1, 2701, 172081, 12966625, 914543245, 36785256625, 195697565245, 1, 3655, 294409, 31146661, 3747354625, 395997225085, 21225093072625, 112917495146365, 1
Offset: 0

Views

Author

Stefano Spezia, Apr 06 2025

Keywords

Comments

A(n,k) is a Carmichael number with k prime factors if n is such all k factors are prime numbers and 2*k-4 divides n (see Ribenboim).

Examples

			The array begins as:
     1,      1,        1,           1,              1, ...
    91,   1729,    63973,     4670029,      677154205, ...
   325,  12025,   877825,   127284625,    36785256625, ...
   703,  38665,  4214485,   914543245,   395997225085, ...
  1225,  89425, 12966625,  3747354625,  2162223618625, ...
  1891, 172081, 31146661, 11243944621,  8106884071741, ...
  2701, 294409, 63886753, 27662964049, 23928463902385, ...
  ...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.

Crossrefs

Cf. A000012 (n=0), A002997, A318646, A382809 (k=3), A382836 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(6n+1)(12n+1)Product[9*2^i*n+1,{i,k-2}];Table[A[n-k,k],{n,0,9},{k,2,n}]//Flatten
Showing 1-4 of 4 results.