cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A324456 Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) = g.

Original entry on oeis.org

6, 10, 12, 15, 18, 20, 21, 24, 28, 33, 34, 36, 39, 40, 45, 48, 52, 57, 63, 65, 66, 68, 72, 76, 80, 85, 87, 88, 91, 93, 96, 99, 100, 105, 111, 112, 117, 120, 126, 130, 132, 133, 135, 136, 144, 145, 148, 153, 156, 160, 165, 171, 175, 176, 185, 186, 189, 190
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_g(m) gives the sum of the base-g digits of m.
The sequence is infinite, since it contains A324460.
The sequence also contains the 3-Carmichael numbers A087788 and the primary Carmichael numbers A324316.
A term m must have at least 2 prime factors, and the divisor g satisfies the inequalities 1 < g < m^(1/(ord_g(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
Note that the sequence contains the 3-Carmichael numbers, but not all Carmichael numbers. This is a nontrivial fact.
The subsequence A324460 mainly gives examples in which g is composite.
See Kellner 2019.
It appears that g is usually prime: compare with A324857 (g prime) and the sparser sequence A324858 (g composite). However, g is usually composite for higher values of m. - Jonathan Sondow, Mar 17 2019

Examples

			6 is a member, since 2 divides 6 and s_2(6) = 2.
		

Crossrefs

Subsequences are A033502, A087788, A324316, A324458, A324460.
Subsequence of A324455.
Union of A324857 and A324858.

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    f[n_] := AnyTrue[Divisors[n], s[n, #] == # &];
    Select[Range[5000], f[#] &]
  • PARI
    isok(n) = {fordiv(n, d, if ((d>1) && (sumdigits(n, d) == d), return (1)););} \\ Michel Marcus, Mar 19 2019

A324460 Numbers m > 1 that have a strict s-decomposition.

Original entry on oeis.org

45, 96, 225, 325, 405, 576, 637, 640, 891, 1225, 1377, 1408, 1536, 1701, 1729, 2025, 2541, 2821, 3321, 3751, 3825, 4225, 4608, 4961, 6400, 6517, 6525, 7381, 7840, 8125, 8281, 9216, 9537, 9801, 10625, 10935, 12025, 12288, 12825, 12936, 13125, 13312, 13357
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The sequence contains the primary Carmichael numbers A324316.
The sequence is infinite. If f(x) counts such numbers m below x, then f(x) > 1/11 x^(1/3) - 1/3 for x >= 1.
A number m > 1 has a strict s-decomposition if there exists a decomposition in n proper factors g_k with exponents e_k >= 1 (the factors g_k being strictly increasing but not necessarily coprime) such that
m = g_1^e_1 * ... * g_n^e_n, where s_{g_k}(m) = g_k for all k,
and s_g(m) gives the sum of the base-g digits of m.
A term m has the following properties:
m must have at least 2 factors g_k. If m = g_1^e_1 * g_2^e_2 with exactly two factors, then e_1 + e_2 >= 3.
Each factor g_k of m satisfies the inequalities 1 < g_k < m^(1/(ord_{g_k}(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
See Kellner 2019.

Examples

			Since 576 = 2^4 * 6^2 with s_2(576) = 2 and s_6(576) = 6, 576 is a member.
		

Crossrefs

Subsequences are A324316, A324458. Subsequence of A324459.

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    HasDecompS[m_] := Module[{E0, EV, G, R, k, n, v},
    If[m < 1 || !CompositeQ[m], Return[False]];
    G = Select[Divisors[m], s[m, #] == # &];
    n = Length[G]; If[n < 2, Return[False]];
    E0 = Array[0 &, n]; EV = Array[v, n];
    R = Solve[Product[G[[k]]^EV[[k]], {k, 1, n}] == m && EV >= E0, EV, Integers]; Return[R != {}]];
    Select[Range[10^4], HasDecompS[#] &]

A324455 Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) >= g.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_g(m) gives the sum of the base-g digits of m.
The sequence is infinite, since it contains A324460 and the Carmichael numbers A002997.
A term m must have at least 2 prime factors, and the divisor g satisfies the inequalities 1 < g < m^(1/(ord_g(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
See Kellner 2019.

Examples

			6 is a member, since 2 divides 6 and s_2(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    f[n_] := AnyTrue[Divisors[n], s[n, #] >= # &];
    Select[Range[1000], f[#] &]

A324458 Numbers m > 1 such that every prime divisor p of m satisfies s_p(m) = p.

Original entry on oeis.org

45, 325, 405, 637, 891, 1729, 2821, 3751, 4961, 6517, 7381, 8125, 8281, 10625, 13357, 21141, 26353, 28033, 29341, 31213, 33125, 35443, 46657, 47081, 58621, 65341, 74431, 78625, 81289, 94501, 98125, 99937, 123823, 146461, 231601, 236321, 252601, 254221, 294409
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The function s_p(m) gives the sum of the base-p digits of m.
The sequence contains the primary Carmichael numbers A324316.
Being a subsequence of A324460, a term m has the following properties:
m must have at least 2 prime factors. If m = p1^e1 * p2^e2 with two primes p1 and p2, then e1 + e2 >= 3.
Each prime factor p of m satisfies the inequalities p < m^(1/(ord_p(m)+1)) <= sqrt(m), where ord_p(m) gives the maximum exponent e such that p^e divides m.
In the terminology of A324460, the prime factorization of m equals a strict s-decomposition of m.
See Kellner 2019.
a(n) is squarefree iff a(n) is a primary Carmichael number A324316. - Jonathan Sondow, Mar 16 2019

Examples

			The number 45 has the prime factors 3 and 5. Since s_3(45) = 3 and s_5(45) = 5, 45 is a member.
		

Crossrefs

Subsequence is A324316. Subsequence of A324457, A324459, and A324460.

Programs

  • Mathematica
    s[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    f[n_] := AllTrue[Transpose[FactorInteger[n]][[1]], s[n, #] == # &];
    Select[Range[10^7], f[#] &]

A324459 Numbers m > 1 that have an s-decomposition.

Original entry on oeis.org

24, 45, 48, 72, 96, 120, 144, 189, 192, 216, 224, 225, 231, 240, 280, 288, 315, 320, 325, 336, 352, 360, 378, 384, 405, 432, 450, 480, 525, 540, 560, 561, 567, 576, 594, 600, 637, 640, 648, 672, 704, 720, 768, 792, 819, 825, 832, 850, 864, 891, 896, 924, 945
Offset: 1

Views

Author

Bernd C. Kellner, Feb 28 2019

Keywords

Comments

The sequence is infinite, since it contains A324460 and the Carmichael numbers A002997.
A number m > 1 has an s-decomposition if there exists a decomposition in n proper factors g_k with exponents e_k >= 1 (the factors g_k being strictly increasing but not necessarily coprime) such that
m = g_1^e_1 * ... * g_n^e_n, where s_{g_k}(m) >= g_k for all k,
and s_g(m) gives the sum of the base-g digits of m.
A term m has the following properties:
m must have at least 2 factors g_k. If m = g_1^e_1 * g_2^e_2 with exactly two factors, then e_1 + e_2 >= 3.
Each factor g_k of m satisfies the inequalities 1 < g_k < m^(1/(ord_{g_k}(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
See Kellner 2019.

Examples

			Since 225 = 5^2 * 9 with s_5(225) = 5 and s_9(225) = 9, 225 is a member.
		

Crossrefs

Subsequences are A002997, A324457, A324458, A324460.

Programs

  • Mathematica
    s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
    HasDecomp[m_] := Module[{E0, EV, G, R, k, n, v},
    If[m < 1 || !CompositeQ[m], Return[False]];
    G = Select[Divisors[m], s[m, #] >= # &];
    n = Length[G]; If[n < 2, Return[False]];
    E0 = Array[0 &, n]; EV = Array[v, n];
    R = Solve[Product[G[[k]]^EV[[k]], {k, 1, n}] == m && EV >= E0, EV, Integers]; Return[R != {}]];
    Select[Range[10^3], HasDecomp[#] &]
Showing 1-5 of 5 results.