A324456 Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) = g.
6, 10, 12, 15, 18, 20, 21, 24, 28, 33, 34, 36, 39, 40, 45, 48, 52, 57, 63, 65, 66, 68, 72, 76, 80, 85, 87, 88, 91, 93, 96, 99, 100, 105, 111, 112, 117, 120, 126, 130, 132, 133, 135, 136, 144, 145, 148, 153, 156, 160, 165, 171, 175, 176, 185, 186, 189, 190
Offset: 1
Examples
6 is a member, since 2 divides 6 and s_2(6) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..806 from Bernd C. Kellner)
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), Article #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Mathematica
s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]]; f[n_] := AnyTrue[Divisors[n], s[n, #] == # &]; Select[Range[5000], f[#] &]
-
PARI
isok(n) = {fordiv(n, d, if ((d>1) && (sumdigits(n, d) == d), return (1)););} \\ Michel Marcus, Mar 19 2019
Comments