cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 70 results. Next

A064238 Values of m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,3.

Original entry on oeis.org

6, 36, 210, 270, 306, 330, 336, 600, 726, 1170, 1236, 1296, 1530, 1656, 2220, 2280, 2556, 3036, 3060, 3066, 4260, 4446, 4800, 4950, 5226, 5580, 5850, 6150, 6360, 6690, 6840, 6966, 7620, 7680, 7686, 7866, 8016, 8166, 8190, 8286, 8520, 8526, 8646, 8940, 9090
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).
All m's are multiples of 6 and m, 2m and 3m divide m(2m+1)(3m+1)-1 automatically.

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Programs

  • Maple
    q:= n-> andmap(isprime, [6*j*n+1$j=1..3]):
    map(x-> 6*x, select(q, [$1..2000]))[];  # Alois P. Heinz, Jun 25 2023
  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda[n]] == 1; Select[ Range@ 9000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[3# + 1] && CarmichaelNbrQ[(# + 1)(2 # + 1)(3 # + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

a(n) = 6 * A046025(n).

Extensions

Offset corrected by Amiram Eldar, Oct 16 2019

A064262 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,51.

Original entry on oeis.org

330, 1656, 1758, 6960, 11958, 14406, 27258, 30318, 30930, 31236, 37356, 40110, 43986, 44088, 50820, 53268, 55818, 63366, 65100, 67650, 71526, 74586, 81930, 90906, 93150, 94476, 98250, 99678, 109470, 119568, 121710, 129768, 135276, 141906, 146190, 147516, 155166
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda[n]] == 1; Select[ Range@ 9000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[51# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(51# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A065703 Values of m such that N = (m+1)(2m+1)(71m+1) is a 3-Carmichael number (A087788).

Original entry on oeis.org

1170, 5430, 53568, 59106, 63366, 86370, 95316, 99576, 103836, 105966, 116190, 183498, 184776, 239730, 260178, 300648, 319818, 333450, 339840, 362418, 367530, 481698, 485958, 503850, 511518, 605238, 644856, 725370, 732186, 762006, 788418, 799920, 837408, 870210
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1000000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[71# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(71# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)
  • PARI
    for(m=1,1e6,is_A002997((m+1)*(2*m+1)*(71*m+1)) & print1(m","))  \\ - M. F. Hasler, Aug 23 2012

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

Definition simplified, missing terms inserted, and extended by M. F. Hasler, Aug 23 2012
More terms from Amiram Eldar, Oct 17 2019

A065695 Numbers m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,53.

Original entry on oeis.org

6120, 11526, 104700, 108516, 115830, 122826, 297726, 298680, 320940, 338430, 339066, 367686, 374046, 387720, 448140, 531456, 534636, 538770, 587106, 618270, 709536, 746106, 762006, 857406, 863766, 897156, 963300, 1115940, 1150920
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1000000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[53# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(53# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

More terms from Robert G. Wilson v, Aug 23 2012

A162290 Let A087788(n) = p*q*r, where p

Original entry on oeis.org

7, 23, 48, 22, 47, 45, 45, 21, 44, 163, 162, 43, 161, 280, 1684, 1363, 159, 351, 950, 1675, 1358, 949, 158, 345, 1829, 947, 1353, 510, 938, 1660, 2796, 1820, 820, 10208, 2779, 935, 1650, 817, 937, 1822
Offset: 1

Views

Author

A.K. Devaraj, Jul 01 2009

Keywords

Comments

A.K. Devaraj conjectured that a(n) is always an integer, and this was proved by Carl Pomerance.
a(n) may be called the Pomerance index of the n-th 3-Carmichael number.
An application of Pomerance index: The index for the Carmichael number 561 is 7. This can be used to prove that 561 is the only 3-factor Carmichael number with 3 as one of its factors. Proof: Let N be a 3-factor composite number. Keep 3 fixed and increase the other two prime factors indefinitely. The relevant Pomerance index is a number less than 7 but greater than 6. As the other two prime factors are increased indefinitely the Pomerance index becomes asymptotic to 6. Hence 561 is the only 3-factor Carmichael number with 3 as a factor. - A.K. Devaraj, Jul 27 2010
Let p be a prime number. Then, along the lines indicated above, it can be proved that there are only a finite number of 3-Carmichael numbers divisible by p. - A.K. Devaraj, Aug 06 2010

Crossrefs

Programs

  • PARI
    do(lim)=my(v=List()); forprime(p=3, sqrtnint(lim\=1,3), forprime(q=p+1, sqrtint(lim\p), forprime(r=q+1, lim\(p*q), if((q*r-1)%(p-1)||(p*r-1)%(q-1)||(p*q-1)%(r-1), , listput(v, [p*q*r,(p*q*r-1)*(p-1)/(q-1)/(r-1)]))))); v=vecsort(v,1); vector(#v,i,v[i][2]) \\ Charles R Greathouse IV, Sep 07 2016

Extensions

Edited by N. J. A. Sloane, Sep 14 2009, based on email messages from David Broadhurst and M. F. Hasler, Jul 10 2009
Spelling corrected by Jason G. Wurtzel, Aug 23 2010

A065696 Numbers m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,55.

Original entry on oeis.org

3876, 7506, 8166, 16746, 20706, 23676, 24336, 40506, 42156, 68226, 69876, 79776, 95286, 123996, 139176, 149076, 166236, 177786, 183066, 187686, 203856, 210126, 213096, 214086, 216396, 221676, 232566, 265566, 307146, 310116, 321006, 326946
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 350000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[55# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(55# + 1)] &] (* Robert G. Wilson v, Aug 23 2012 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

A065697 Values of m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,57.

Original entry on oeis.org

198, 996, 2706, 9090, 13536, 16728, 25620, 33486, 34056, 35310, 41010, 53550, 58566, 60960, 61986, 63240, 72816, 72930, 74526, 75780, 77490, 80340, 83760, 96756, 97326, 100746, 103140, 111918, 125028, 125370, 128676, 129360, 136656, 164700, 174048, 175758, 176898
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@n && Mod[n, CarmichaelLambda@n] == 1; Select[ Range@140000, PrimeQ[# +1] && PrimeQ[2# +1] && PrimeQ[57# +1] && CarmichaelNbrQ[(# +1) (2# +1) (57# +1)] &] (* Robert G. Wilson v, Jul 31 2017 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

More terms from Amiram Eldar, Oct 17 2019

A065698 Numbers m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,61.

Original entry on oeis.org

5580, 19488, 22050, 86466, 140268, 173208, 177966, 227010, 233598, 265806, 273126, 355110, 395736, 402690, 432336, 476988, 486138, 550188, 578370, 588618, 754416, 788088, 844086, 1044288, 1092600, 1204596, 1217406, 1386498, 1415778, 1446888, 1463358, 1563276, 1566936, 1599876
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 1600000, PrimeQ[# +1] && PrimeQ[2# +1] && PrimeQ[61# +1] &&  CarmichaelNbrQ[(# +1) (2# +1) (61# +1)] &] (* Robert G. Wilson v, Jul 31 2017 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

a(8) onward from Robert G. Wilson v, Jul 31 2017

A065699 Values of m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,63.

Original entry on oeis.org

156, 2550, 3180, 19686, 29640, 40350, 41610, 43626, 46020, 51060, 65550, 72480, 79536, 80670, 85836, 97176, 133716, 150096, 159420, 170760, 184116, 191550, 214986, 229980, 255180, 262110, 278490, 279120, 293106, 294996, 301926, 337080, 350940, 369210, 370596
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 63}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

More terms from Amiram Eldar, Oct 17 2019

A065700 Values of m such that N = (am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,65.

Original entry on oeis.org

876, 1656, 7506, 9066, 12966, 33636, 67956, 74586, 83556, 89796, 111636, 126456, 129186, 143616, 150246, 154926, 166626, 184566, 222786, 241116, 252036, 252816, 261786, 271926, 288306, 303906, 304686, 319116, 340956, 344856, 351096, 357726, 362406, 363966, 365526
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 65}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Formula

am+1, bm+1, cm+1 are primes and am|(N-1), bm|(N-1), cm|(N-1).

Extensions

More terms from Amiram Eldar, Oct 17 2019
Showing 1-10 of 70 results. Next