A381289 Number of subsets of 6 integers between 1 and n such that their sum is 0 modulo n.
1, 3, 10, 20, 42, 76, 132, 212, 335, 497, 728, 1028, 1428, 1932, 2586, 3384, 4389, 5601, 7084, 8844, 10966, 13442, 16380, 19780, 23751, 28301, 33566, 39536, 46376, 54086, 62832, 72624, 83661, 95931, 109668, 124872, 141778, 160398, 181006
Offset: 7
Examples
For n=8, there are a(8)=3 order 6 subsets of Z/8Z with sum equal to 0 mod 8.
Links
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,-1,1,4,-3,-3,4,1,-1,-3,1,2,-1).
Crossrefs
Cf. A011796.
Formula
G.f.: x^7*(1 + x + 3*x^2 + 2*x^4 + 4*x^5 + x^6 - x^7 + x^8)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)*(1 - x^6)). - David Broadhurst, Feb 19 2025
Comments