A381350 Number of subsets of 8 integers between 1 and n such that their sum is 2 modulo n.
1, 5, 15, 42, 99, 217, 429, 808, 1430, 2438, 3978, 6308, 9690, 14550, 21318, 30664, 43263, 60115, 82225, 111038, 148005, 195143, 254475, 328752, 420732, 534076, 672452, 840648, 1043460, 1287036, 1577532, 1922736, 2330445, 2810385, 3372291, 4028178, 4790071, 5672645
Offset: 9
Examples
For n=10, there are a(10)=5 order 8 subsets of Z/10Z with sum equal to 2 mod 10.
Links
- Stefano Spezia, Table of n, a(n) for n = 9..10000
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-4,12,-12,4,12,-22,12,4,-12,12,-4,-4,4,-1).
Formula
G.f.: x^9*(1 + x - x^2 + 6*x^3 + 2*x^5 + 6*x^7 - x^8 + x^9 + x^10)/((1 - x)^4*(1 - x^2)^2*(1 - x^4)*(1 - x^8)).
a(n) = (n - 4)*(2520 - 24*(281 + 35*(-1)^n)*n + 5*(1039 + 21*(-1)^n)*n^2 - 2112*n^3 + 452*n^4 - 48*n^5 + 2*n^6 - 2520*A056594(n))/80640. - Stefano Spezia, Feb 21 2025
Comments