cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jason G. Wurtzel

Jason G. Wurtzel's wiki page.

Jason G. Wurtzel has authored 24 sequences. Here are the ten most recent ones:

A175730 Numbers with deficiency of 42.

Original entry on oeis.org

43, 69, 99, 165, 1168, 1365, 2139136, 32062485, 33722368, 132701205, 8592621568
Offset: 1

Author

Jason G. Wurtzel, Aug 24 2010

Keywords

Comments

Numbers with an abundance of -42.
7454198513685 is also in the sequence. - Alexander Violette, Jan 10 2021
Numbers of the form 2^k * (2^(k + 1) + 41) are in the sequence if and only if 2^(k + 1) + 41 is prime. - David A. Corneth, Jan 15 2021

Crossrefs

Cf. A033879 (deficiency).

Programs

  • PARI
    for(n=1, 100000000, if(((sigma(n)-2*n)==-42), print1(n, ", ")))
    
  • PARI
    is(n)=2*n-sigma(n)==42 \\ Charles R Greathouse IV, Jan 11 2021
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if(2*n[1]-sigma(n)==42, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 11 2021

Extensions

a(10) from Alexander Violette, Jan 10 2021
a(11) from Charles R Greathouse IV, Jan 15 2021

A175728 Decimal expansion of e written as a sequence of distinct positive integers.

Original entry on oeis.org

2, 7, 1, 8, 28, 18, 284, 5, 90, 4, 52, 3, 53, 60, 287, 47, 13, 526, 6, 24, 9, 77, 57, 2470, 93, 69, 99, 59, 574, 96, 696, 76, 27, 72, 40, 766, 30, 35, 354, 75, 94, 571, 38, 21, 78, 525, 16, 64, 274, 2746, 63, 91, 93200, 305, 992, 181, 74, 135, 966, 290, 43, 572, 900, 33, 42
Offset: 1

Author

Jason G. Wurtzel, Aug 19 2010

Keywords

Comments

Inverse: 3, 1, 12, 10, 8, 19, 2, 4, 21, 119, 86, 166, 17, 154, 160, 47, 192, 6, 83, 214, ..., . - Robert G. Wilson v, Aug 22 2010

Crossrefs

Programs

  • Mathematica
    rd = RealDigits[E, 10, 200][[1]]; lst = {}; f[n_] := Block[{k = 1}, While[a = FromDigits[ Take[ rd, k]]; MemberQ[lst, a] || rd[[k + 1]] == 0, k++ ]; AppendTo[ lst, a]; rd = Drop[rd, k]]; Array[f, 70]; lst (* Robert G. Wilson v, Aug 22 2010 *)
  • Python
    from itertools import islice
    from sympy import exp
    def diggen():
        yield from map(int, str(exp(1).n(10**5))[:-1].replace(".", ""))
    def agen(): # generator of terms
        g = diggen()
        aset, nextd = set(), next(g)
        while True:
            an, nextd = nextd, next(g)
            while an in aset or nextd == 0:
                an, nextd = int(str(an) + str(nextd)), next(g)
            yield an
            aset.add(an)
    print(list(islice(agen(), 65))) # Michael S. Branicky, Mar 31 2022

Extensions

More terms from Robert G. Wilson v, Aug 22 2010

A180231 Prime partial sums of digits of decimal expansion of e.

Original entry on oeis.org

2, 29, 37, 47, 79, 103, 173, 191, 257, 269, 331, 491, 523, 547, 547, 547, 641, 673, 677, 701, 701, 739, 751, 797, 823, 853, 881, 907, 907, 919, 977, 977, 1013, 1039, 1051, 1063, 1091, 1093, 1097, 1153, 1163, 1201, 1213, 1237, 1259, 1279, 1373, 1427, 1427, 1433, 1487
Offset: 1

Author

Jason G. Wurtzel, Aug 18 2010

Keywords

Crossrefs

A046975 INTERSECT A000040.

Programs

  • Mathematica
    Select[Accumulate[First[RealDigits[N[E,500]]]],PrimeQ] (* Harvey P. Dale, Aug 19 2010 *)

Extensions

More terms from Harvey P. Dale, Aug 19 2010
Further terms from R. J. Mathar, Aug 20 2010

A180152 Numbers k such that the sum of the first k semiprimes is a prime.

Original entry on oeis.org

3, 4, 5, 7, 8, 15, 21, 22, 37, 56, 59, 62, 82, 85, 89, 91, 114, 119, 121, 129, 139, 146, 168, 169, 189, 195, 197, 214, 227, 258, 286, 295, 312, 333, 341, 352, 360, 361, 387, 400, 419, 426, 434, 437, 440, 466, 470, 483, 495, 497, 504, 556, 595, 610, 619, 629, 636
Offset: 1

Author

Jason G. Wurtzel, Aug 13 2010

Keywords

Examples

			21 is a term because the sum of the first 21 semiprimes is 647, which is prime.
		

Crossrefs

Programs

  • Magma
    SP:=[ n: n in [2..3000] | &+[ k[2]: k in Factorization(n) ] eq 2 ]; V:=[]; s:=0; for j in [1..640] do s+:=SP[j]; if IsPrime(s) then Append(~V, j); end if; end for; V; // Klaus Brockhaus, Aug 14 2010
  • Maple
    A062198 := proc(n) add( A001358(i),i=1..n) ; end proc:
    isA180152 := proc(n) isprime( A062198(n)) ; end proc:
    for n from 1 to 1000 do if isA180152(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Aug 14 2010
  • Mathematica
    Position[Accumulate[Select[Range[10000],PrimeOmega[#]==2&]],?PrimeQ] // Flatten (* _Harvey P. Dale, Feb 17 2021 *)

Extensions

More terms from Klaus Brockhaus and R. J. Mathar, Aug 14 2010

A179659 Digital root of the n-th weird number.

Original entry on oeis.org

7, 8, 7, 7, 1, 1, 2, 8, 4, 1, 1, 7, 8, 5, 2, 7, 5, 1, 2, 7, 1, 4, 5, 1, 2, 8, 4, 1, 2, 8, 5, 2, 7, 4, 5, 1, 8, 7, 8, 4, 5, 4, 1, 8, 4, 5, 2, 4, 1, 7, 8, 5, 7, 8, 1, 8, 4, 2, 7, 4, 5, 2, 4, 5, 1, 2, 5, 7, 8, 1, 2, 8, 2, 7, 7, 4, 2, 8, 5, 1, 7, 5, 2, 8, 4, 1, 7, 8, 4, 7, 5, 1, 2, 5, 8, 5, 1, 4, 5, 2, 4, 2, 4, 2, 4, 1
Offset: 1

Author

Jason G. Wurtzel, Jul 23 2010

Keywords

Examples

			The 9th weird number is 10570. 1+0+5+7+0=13, and 1+3=4.
		

Crossrefs

Formula

a(n) = A010888(A006037(n)).

Extensions

Extended, keyword:base and formula added - R. J. Mathar, Jul 27 2010

A179679 Smaller of each pair of consecutive primes which sum to a practical number.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 37, 41, 43, 47, 53, 59, 61, 71, 79, 97, 101, 103, 107, 113, 137, 139, 149, 151, 157, 163, 167, 173, 179, 191, 193, 197, 223, 227, 229, 239, 257, 263, 269, 277, 283, 293, 311, 313, 317, 337, 347, 349, 359, 367, 397, 401, 409, 419, 431
Offset: 1

Author

Jason G. Wurtzel, Jul 24 2010

Keywords

Comments

Complement is: 2, 23, 31, 67, 73, 83, 89, 109, 127, 131, 181, 199, 211, ..., . - Robert G. Wilson v, Aug 03 2010

Examples

			19 is a term because the next consecutive prime is 23, and 19 + 23 = 42, which is a practical number.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; First@# & /@ Select[ Partition[ Prime@ Range@ 85, 2, 1], PracticalQ[Plus @@ # ] &] (* Robert G. Wilson v, Aug 03 2010 *)

Extensions

More terms from Robert G. Wilson v, Aug 03 2010

A179656 prime(n) mod (digital root(prime(n))).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 0, 3, 1, 3, 0, 1, 1, 1, 5, 4, 5, 3, 7, 0, 2, 1, 1, 6, 1, 3, 3, 0, 3, 0, 1, 1, 3, 4, 4, 1, 0, 2, 1, 3, 0, 1, 1, 5, 0, 3, 6, 1, 1, 1, 4, 3, 3, 2, 1, 5, 0, 4, 1, 3, 3, 0, 1, 5, 1, 2, 1, 2, 6, 1, 7, 3, 1, 0, 3, 1, 0, 1, 1, 4, 1, 7, 0, 5, 1, 1, 2, 1, 3, 3, 1, 0, 1, 3, 7, 4, 1, 0, 0, 1, 5, 3, 1, 3
Offset: 1

Author

Jason G. Wurtzel, Jul 23 2010

Keywords

Comments

For the first one million primes, the distribution of the values (0..8) is {166572, 361136, 69399, 194537, 69405, 69460, 27798, 41693, 0} . - Robert G. Wilson v, Aug 02 2010

Examples

			For n=9 : prime(9)=23, and digital root of 23 = 2+3 = 5, so 23 mod 5 = 3.
For n=16 : prime(16)=53, and digital root of 53 = 5+3 = 8, so 53 mod 8 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@n}, Mod[p, Mod[p, 9]]]; Array[f, 111] (* Robert G. Wilson v, Aug 02 2010 *)

Extensions

More terms from Robert G. Wilson v, Aug 02 2010

A179655 Digital root of n-th abundant number.

Original entry on oeis.org

3, 9, 2, 6, 3, 9, 4, 6, 3, 9, 2, 6, 3, 7, 9, 6, 8, 3, 7, 9, 6, 1, 3, 5, 9, 4, 6, 3, 9, 6, 3, 5, 9, 6, 3, 7, 9, 6, 3, 5, 9, 6, 3, 7, 9, 2, 6, 1, 3, 9, 4, 6, 8, 3, 9, 6, 3, 9, 6, 8, 3, 9, 2, 6, 1, 3, 9, 6, 3, 7, 9, 2, 6, 3, 5, 9, 6, 3, 7, 9, 6, 8, 1, 3, 9, 4, 6, 8, 3, 9, 2, 6, 3, 5, 9, 4, 6, 3, 9, 2, 6, 3, 9, 6, 8
Offset: 1

Author

Jason G. Wurtzel, Jul 22 2010

Keywords

Examples

			The 11th abundant number is 56. 5+6=11. 1+1=2. The digital root is 2.
		

Crossrefs

Cf. A005101.

Programs

  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2 n; Mod[ Select[ Range@ 500, abQ], 9] /. 0 -> 9 (* Robert G. Wilson v, Aug 23 2010 *)

Extensions

More terms from Robert G. Wilson v, Aug 23 2010

A179650 a(n) = (n-th prime) mod (n-th nonprime).

Original entry on oeis.org

0, 3, 5, 7, 2, 3, 5, 5, 8, 13, 13, 17, 20, 21, 23, 3, 7, 7, 11, 11, 9, 13, 15, 19, 25, 25, 25, 27, 25, 25, 37, 39, 41, 41, 49, 49, 1, 1, 2, 5, 8, 7, 11, 7, 8, 7, 16, 25, 23, 22, 23, 23, 19, 26, 29, 32, 35, 31, 34, 35, 31, 38, 49, 50, 49, 47, 58, 61, 68, 67, 68, 71, 73, 76, 79, 77, 77
Offset: 1

Author

Jason G. Wurtzel, Jul 22 2010

Keywords

Comments

In the first 100000 terms, the integers {4, 36, 40, 54} are missing. - Robert G. Wilson v, Jul 23 2010

Examples

			For n=4, 7 mod 8 = 7.
		

Crossrefs

Programs

  • Maple
    A179650 := proc(n) ithprime(n) mod A018252(n) ; end proc: seq(A179650(n),n=1..100) ; # R. J. Mathar, Jul 23 2010
  • Mathematica
    NonPrime[n_Integer] := FixedPoint[n + PrimePi@# &, n + PrimePi@n]; f[n_] := Mod[Prime@n, NonPrime@n]; Array[f, 70] (* Robert G. Wilson v, Jul 23 2010 *)

Extensions

More terms from R. J. Mathar, Robert G. Wilson v and Carl R. White, Jul 23 2010

A179657 Digital root of n-th practical number.

Original entry on oeis.org

1, 2, 4, 6, 8, 3, 7, 9, 2, 6, 1, 3, 5, 9, 4, 6, 3, 9, 2, 6, 1, 3, 9, 6, 8, 3, 7, 9, 6, 1, 5, 9, 4, 3, 9, 2, 6, 5, 9, 6, 3, 7, 9, 6, 5, 9, 3, 7, 9, 2, 6, 1, 3, 9, 4, 8, 3, 9, 6, 9, 4, 8, 3, 9, 2, 6, 1, 9, 6, 3, 7, 9, 2, 6, 5, 9, 6, 3, 7, 9, 6, 1, 9, 4, 8, 9, 2, 6, 3, 5, 9, 4, 3, 9, 2, 6, 9, 8, 7, 9, 6, 1, 3, 5, 9
Offset: 1

Author

Jason G. Wurtzel, Jul 23 2010

Keywords

Examples

			For n=11, the 11th practical number is 28. As 2+8 = 10 and 1+0 = 1, the digital root is 1.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[ If[ p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Mod[ Select[ Range@ 500, PracticalQ], 9] /. {0 -> 9} (* Robert G. Wilson v, Aug 02 2010 *)
  • PARI
    isok(n) = bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return);
    for(n=1, 1e3, if(isok(n), print1((n-1)%9+1", "))) \\ Altug Alkan, Nov 12 2015

Formula

a(n) = A010888(A005153(n)). - Michel Marcus, Nov 12 2015

Extensions

More terms from Robert G. Wilson v, Aug 02 2010