cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Miklos Kristof

Miklos Kristof's wiki page.

Miklos Kristof has authored 101 sequences. Here are the ten most recent ones:

A190818 Expansion of e.g.f.: 1/(1-2*tanh(x)).

Original entry on oeis.org

1, 2, 8, 44, 320, 2912, 31808, 405344, 5903360, 96722432, 1760811008, 35260703744, 770296217600, 18229999665152, 464622502289408, 12687528814751744, 369557965317079040, 11437129322496131072, 374778854976227115008, 12963259774166774841344, 471986702056014668103680
Offset: 0

Author

Miklos Kristof, May 21 2011

Keywords

Crossrefs

Cf. A011782 (e.g.f. of 1/(1-tanh(x))).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-2*Tanh(x)) ))); // G. C. Greubel, Dec 03 2023
    
  • Maple
    E(x):=1/(1-2*tanh(x)):
    a[0]:=E(x):
    for n from 1 to 30 do a[n]:=diff(a[n-1],x) od:
    x:=0:
    seq(a[n],n=0..30);
  • Mathematica
    CoefficientList[Series[1/(1-2*Tanh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(1/(1-2*tanh(x)))) /* Joerg Arndt, May 21 2011 */
    
  • SageMath
    def A190818_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 1/(1-2*tanh(x)) ).egf_to_ogf().list()
    A190818_list(40) # G. C. Greubel, Dec 03 2023

Formula

E.g.f: 1/(1-2*tanh(x)).
a(n) ~ n! * 2^(n+2)/(3*(log(3))^(n+1)). - Vaclav Kotesovec, Jun 26 2013

A146301 a(n) = (8*n+3)*(8*n+7).

Original entry on oeis.org

21, 165, 437, 837, 1365, 2021, 2805, 3717, 4757, 5925, 7221, 8645, 10197, 11877, 13685, 15621, 17685, 19877, 22197, 24645, 27221, 29925, 32757, 35717, 38805, 42021, 45365, 48837, 52437, 56165, 60021, 64005, 68117, 72357, 76725, 81221
Offset: 0

Author

Miklos Kristof, Oct 29 2008

Keywords

Comments

Sum_{n>=0} 1/((8*n+3)*(8*n+7)) = (1/16)*sqrt(2)*(log(sqrt(2)-1) + Pi/2) = 0.60936936799920131042...

Programs

  • Maple
    seq((8*n+3)*(8*n+7),n=0..40);
  • Mathematica
    Table[(8n+3)(8n+7),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{21,165,437},40] (* Harvey P. Dale, Aug 16 2015 *)
  • PARI
    a(n)=(8*n+3)*(8*n+7) \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f: (21 + 102*x + 5*x^2)/(1-x)^3.
E.g.f.: (21 + 144*x + 64*x^2)*exp(x).

A146302 a(n) = (8*n+5)*(8*n+9).

Original entry on oeis.org

45, 221, 525, 957, 1517, 2205, 3021, 3965, 5037, 6237, 7565, 9021, 10605, 12317, 14157, 16125, 18221, 20445, 22797, 25277, 27885, 30621, 33485, 36477, 39597, 42845, 46221, 49725, 53357, 57117, 61005, 65021, 69165, 73437, 77837, 82365
Offset: 0

Author

Miklos Kristof, Oct 29 2008

Keywords

Comments

From Miklos Kristof, Nov 03 2008: (Start)
f(y) = y^4*(1 + y^4) = y^4 - y^8 + y^12 - y^16 + y^20 - y^24 + ...
Integral_{y} f(y) dy = y^5/5 - y^9/9 + y^13/13 - y^17/17 + y^21/21 - y^25/25 + ...
Integral_{y=0..1} f(y) dy = 1/5 - 1/9 + 1/13 - 1/17 + 1/21 - 1/25 + ...
= (9 - 5)/(5*9) + (17 - 13)/(13*17) + (25 - 21)/(21*25) + ...
= 4/(5*9) + 4/(13*17) + 4/(21*25) + ...
Integral_{y=0..1} f(y) dy = Sum_{m>=0} 4/((8*m+5)*(8*m+9))
= -(1/8)*sqrt(2)*Pi + 1 - (1/4)*sqrt(2)*log(1+sqrt(2))
= 0.13302701266008896241... (End)

Programs

  • Maple
    seq((8*m+5)*(8*m+9),m=0..40); # Miklos Kristof, Nov 03 2008
  • Mathematica
    Table[(8n+5)(8n+9),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{45,221,525},40] (* Harvey P. Dale, Oct 10 2015 *)
  • PARI
    a(n)=(8*n+5)*(8*n+9) \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f: (45 + 86*x - 3*x^2)/(1-x)^3.
E.g.f.: (45 + 176*x + 64*x^2)*exp(x).
a(n) = A004770(n) * A004768(n). - Reinhard Zumkeller, Oct 30 2008

A141759 a(n) = 16n^2 + 32n + 15.

Original entry on oeis.org

15, 63, 143, 255, 399, 575, 783, 1023, 1295, 1599, 1935, 2303, 2703, 3135, 3599, 4095, 4623, 5183, 5775, 6399, 7055, 7743, 8463, 9215, 9999, 10815, 11663, 12543, 13455, 14399, 15375, 16383, 17423, 18495, 19599, 20735, 21903, 23103, 24335, 25599
Offset: 0

Author

Miklos Kristof, Sep 15 2008

Keywords

Comments

Via the partial fraction decomposition 1/((4n+3)*(4n+5)) = (1/2) *(1/(4n+3) -1/(4n+5)) we find 2*Sum_{n>=0} (-1)^n/a(n) = 2*Sum_{n>=0} (-1)^n/( (4*n+3)*(4*n+5) ) = 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ... = (1/1 + 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ..)-1 = Sum_{n>=0} (-1)^n/A016813(n) + Sum_{n>=0} (-1)^n/A004767(n) -1 = -1 + Sum_{n>=0} b(n)/n^1 where b(n) = 1, 0, 1, 0, -1, 0, -1, 0 is a sequence with period length 8, one of the Dirichlet L-series modulo 8. The alternating sum becomes -1 +L(m=8,r=4,s=1) = Pi*sqrt(2)/4-1 = A093954 - 1.
Pi = 4 - 8*Sum(1/a(n)) noted by Bronstein-Semendjajew for the variant a(n) = (4n-1)*(4n+1) starting at n=1. - Frank Ellermann, Sep 18 2011
The identity (16*n^2-1)^2 - (64*n^2-8)*(2*n)^2 = 1 can be written as a(n)^2 - A158487(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012
Sequence found by reading the line from 15, in the direction 15, 63,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
Essentially the least common multiple of 4*n+1 and 4*n-1. - Colin Barker, Feb 11 2017

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed., 1965, ch. 4.1.8.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.

Crossrefs

Programs

Formula

G.f.: (15+18*x-x^2)/(1-x)^3.
E.g.f.: (15+48*x+16*x^2)*exp(x).
a(n) = a(-n-2) = A016802(n+1) - 1. - Bruno Berselli, Sep 22 2011
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = Pi/(2*sqrt(2)) (A093954).
Product_{n>=0} (1 - 1/a(n)) = sin(Pi/(2*sqrt(2))). (End)

Extensions

Formula indices corrected by R. J. Mathar, Jul 07 2009

A135399 a(n) = (-1)^n + (-2)^n + 3^n (-1, -2 and 3 are the roots of the equation x^3 = 7*x + 6).

Original entry on oeis.org

3, 0, 14, 18, 98, 210, 794, 2058, 6818, 19170, 60074, 175098, 535538, 1586130, 4799354, 14316138, 43112258, 129009090, 387682634, 1161737178, 3487832978, 10458256050, 31385253914, 94134790218, 282446313698, 847255055010, 2541932937194, 7625463267258
Offset: 0

Author

Miklos Kristof, Dec 11 2007

Keywords

Comments

seq(a(3*n+2)/14, n=0..9) = 1, 15, 487, 12507, 342811, 9214935, 249130927, 6723913587, 181566638371, 4902131463855
seq(a(3*n+1)/98, n=0..9) = 0, 1, 21, 613, 16185, 439921, 11854461, 320257693, 8645459745, 233439396841
seq(a(2*n+1)/6, n=0..14) = 0, 3, 35, 343, 3195, 29183, 264355, 2386023, 21501515, 193622863, 1743042675, 15689131703, 141209175835, 1270910544543, 11438306748995
seq(a(6*n+1)/294, n=0..4) = 0, 7, 5395, 3951487, 2881819915

Examples

			a(3) = (-1)^3 + (-2)^3 + 3^3 = -1 - 8 + 27 = 18.
		

Programs

  • Mathematica
    Table[(-1)^n+(-2)^n+3^n,{n,0,30}] (* or *) LinearRecurrence[{0,7,6},{3,0,14},30] (* Harvey P. Dale, Oct 18 2015 *)
  • PARI
    a(n)=(-1)^n + (-2)^n + 3^n \\ Charles R Greathouse IV, Oct 12 2016

Formula

G.f.: (3 - 7*x^2)/(1-7*x^2-6*x^3).
E.g.f.: exp(-x) + exp(-2*x) + exp(3*x)
a(0)=3, a(1)=0, a(2)=14, a(n) = 7*a(n-2) + 6*a(n-3). - Harvey P. Dale, Oct 18 2015

A133818 a(n) = (8*n+3)*(8*n+5)*(8*n+7)*(8*n+9).

Original entry on oeis.org

945, 36465, 229425, 801009, 2070705, 4456305, 8473905, 14737905, 23961009, 36954225, 54626865, 77986545, 108139185, 146289009, 193738545, 251888625, 322238385, 406385265, 506025009, 622951665, 759057585, 916333425, 1096868145
Offset: 0

Author

Miklos Kristof, Jan 06 2008, Sep 15 2008

Keywords

Comments

Also 1/3-1/5-1/7+1/9+1/11-1/13-1/15+1/17+1/19--++... = Pi*sqrt(2)/4-1 - Miklos Kristof, Sep 15 2008
Also sum(2*(-1)^n/((4*n+3)*(4*n+5)), n=0..infinity) = Pi*sqrt(2)/4-1 - Miklos Kristof, Sep 15 2008

Programs

  • Maple
    seq((8*n+3)*(8*n+5)*(8*n+7)*(8*n+9), n=0..30);
    sum(32*(4*n+3)/((8*n+3)*(8*n+5)*(8*n+7)*(8*n+9)), n=0..infinity) = Pi*sqrt(2)/4-1. Maple: evalf(Pi*sqrt(2)/4-1, 30); gives 0.11072073453959156175397024752... - Miklos Kristof, Sep 15 2008
  • Mathematica
    Times@@@(#+{3,5,7,9}&/@(8Range[0,25])) (* Harvey P. Dale, Mar 14 2011 *)

Formula

G.f.: 3*(315 + 10580*x + 18850*x^2 + 3028*x^3 - 5*x^4)/(1-x)^5.
E.g.f: (945 + 35520*x + 78720*x^2 + 36864*x^3 + 4096*x^4)*exp(x).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 26 2021

A135400 a(n) = (4*n^4 - 4*n^3 - n^2 + 3*n)/2.

Original entry on oeis.org

1, 17, 108, 382, 995, 2151, 4102, 7148, 11637, 17965, 26576, 37962, 52663, 71267, 94410, 122776, 157097, 198153, 246772, 303830, 370251, 447007, 535118, 635652, 749725, 878501, 1023192, 1185058, 1365407, 1565595
Offset: 1

Author

Miklos Kristof, Dec 11 2007

Keywords

Comments

Form the infinite matrix:
1 2 4 7 11 ...
3 5 8 12 17 ...
6 9 13 18 24 ...
10 14 19 25 32 ...
15 20 26 33 41 ...
...
The diagonal elements are b(n) = 1, 5, 13, 25, 41, ... = 2*n*(n-1)+1 = A001844(n-1).
M(n,m) = ((n+m)^2-n-3*m+2)/2.
a(n) = M(n,b(n)) = M(1,1), M(2,5), M(3,13), M(4,25), M(5,41), ...
Let us define the PHI algebra as follows:
The basis of the PHI algebra is the PHI(1), PHI(2), PHI(3), ... elements, and the production rules are:
PHI(M(n,m))*PHI(n) = PHI(m) and every other production is zero.
An element of the PHI algebra is X = Sum_{n>=1} c(n)*PHI(n), where c(n) are real or complex constants.
UNIT = Sum_{n>=1} PHI(b(n)) = PHI(1) + PHI(5) + PHI(13) + PHI(25)+ ...
For every X elements: UNIT*X = X.
OMEGA = Sum_{n>=1} PHI(n) = PHI(1) + PHI(2) + PHI(3) + ...
ULTRA = Sum_{n>=1} PHI(a(n)) = PHI(1) + PHI(17) + PHI(108) + PHI(382) + ...
ULTRA*OMEGA = UNIT.
The PHI algebra is a nonassociative, but universal algebra; every finite or countable algebra can be modeled in the PHI algebra.

Crossrefs

Cf. A001844.

Programs

  • Maple
    seq(2*n^4-2*n^3-1/2*n^2+3/2*n,n=1..30); for n from 1 to 30 do b[n]:=2*n*(n-1)+1 od: seq(((n+b[n])^2-n-3*b[n]+2)/2,n=1..30);
  • Mathematica
    Table[2n^4-2n^3-n^2/2+(3n)/2,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,17,108,382,995},30] (* Harvey P. Dale, May 25 2012 *)
  • PARI
    a(n)=n*(4*n^3-4*n^2-n+3)/2 \\ Charles R Greathouse IV, Oct 12 2016

Formula

G.f.: (2*x^4 + 33*x^3 + 12*x^2 + x)/(1-x)^5.
E.g.f.: (1/2)*(4*x^4 + 20*x^3 + 15*x^2 + 2*x)*exp(x).
a(1)=1, a(2)=17, a(3)=108, a(4)=382, a(5)=995, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 25 2012

A133766 a(n) = (4*n+1)*(4*n+3)*(4*n+5).

Original entry on oeis.org

15, 315, 1287, 3315, 6783, 12075, 19575, 29667, 42735, 59163, 79335, 103635, 132447, 166155, 205143, 249795, 300495, 357627, 421575, 492723, 571455, 658155, 753207, 856995, 969903, 1092315, 1224615, 1367187, 1520415, 1684683, 1860375, 2047875, 2247567, 2459835
Offset: 0

Author

Miklos Kristof, Jan 02 2008

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Programs

  • Maple
    seq((4*n+1)*(4*n+3)*(4*n+5),n=0..40);
  • Mathematica
    Table[c=4n;(c+1)(c+3)(c+5),{n,0,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{15,315,1287,3315},30] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    a(n)=(4*n+1)*(4*n+3)*(4*n+5) \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: 3*(5 + 85*x + 39*x^2 - x^3)/(1-x)^4 .
E.g.f: (15 + 300*x + 336*x^2 + 64*x^3)*exp(x) .
Sum_{n>=0} 4/a(n) = (Pi-2)/4. [Jolley, eq. 238]
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Harvey P. Dale, May 06 2012
Sum_{n>=0} (-1)^n/a(n) = 1/8 + (log(2*sqrt(2)+3) - Pi)/(16*sqrt(2)). - Amiram Eldar, Feb 27 2022

A135351 a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.

Original entry on oeis.org

0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0

Author

Miklos Kristof, Dec 07 2007

Keywords

Comments

Partial sums of A155980 for n > 2. - Klaus Purath, Jan 30 2021

Crossrefs

Cf. A007583, A062092, A087289, A020988 (even bisection), A163834 (odd bisection), A078008, A084247, A181565.

Programs

  • GAP
    List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
  • Magma
    a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
    
  • Maple
    G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
  • Mathematica
    Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
    LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
    
  • Sage
    [(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
    

Formula

G.f.: x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)).
E.g.f.: (exp(2*x) + 3*exp(x) - 7*exp(-x) + 3)/6.
From Paul Curtz, Dec 20 2020: (Start)
a(n) + (period 2 sequence: repeat [1, -2]) = A328284(n+2).
a(n+1) + (period 2 sequence: repeat [-2, 1]) = A001045(n).
a(n+1) + (period 2 sequence: repeat [-1, 0]) = A078008(n).
a(n+1) + (period 2 sequence : repeat [-3, 2]) = -(-1)^n*A084247(n).
a(n+4) = a(n+1) + 7*A001045(n).
a(n+4) + a(n+1) = A181565(n).
a(2*n+2) + a(2*n+3) = A087289(n) = 3*A007583(n).
a(2*n+1) = A163834(n), a(2*n+2) = A020988(n). (End)

Extensions

First part of definition corrected by Klaus Brockhaus, Dec 05 2009

A133767 a(n) = (4*n+3)*(4*n+5)*(4*n+7).

Original entry on oeis.org

105, 693, 2145, 4845, 9177, 15525, 24273, 35805, 50505, 68757, 90945, 117453, 148665, 184965, 226737, 274365, 328233, 388725, 456225, 531117, 613785, 704613, 803985, 912285, 1029897, 1157205, 1294593, 1442445, 1601145, 1771077, 1952625, 2146173, 2352105, 2570805, 2802657
Offset: 0

Author

Miklos Kristof, Jan 02 2008

Keywords

Programs

  • Maple
    seq((4*n+3)*(4*n+5)*(4*n+7),n=0..40);
  • Mathematica
    a[n_]:=(4*n+3)*(4*n+5)*(4*n+7); Array[a,35,0] (* Stefano Spezia, Aug 27 2025 *)

Formula

G.f.: 3*(35 + 91*x + x^2 + x^3)/(1-x)^4.
E.g.f: (105 + 588*x + 432*x^2 + 64*x^3)*exp(x).
Sum_{m>0} 4/a(m) = 5/6 - Pi/4.

Extensions

a(31)-a(34) from Stefano Spezia, Aug 27 2025