cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A063448 Decimal expansion of Pi * sqrt(2).

Original entry on oeis.org

4, 4, 4, 2, 8, 8, 2, 9, 3, 8, 1, 5, 8, 3, 6, 6, 2, 4, 7, 0, 1, 5, 8, 8, 0, 9, 9, 0, 0, 6, 0, 6, 9, 3, 6, 9, 8, 6, 1, 4, 6, 2, 1, 6, 8, 9, 3, 7, 5, 6, 9, 0, 2, 2, 3, 0, 8, 5, 3, 9, 5, 6, 0, 6, 9, 5, 6, 4, 3, 4, 7, 9, 3, 0, 9, 9, 4, 7, 3, 9, 1, 0, 5, 7, 5, 3, 2, 6, 9, 3, 4, 7, 6, 4, 7, 6, 5, 2, 3
Offset: 1

Views

Author

Jason Earls, Jul 24 2001

Keywords

Comments

Hypotenuse of the right triangle with legs Pi and Pi. - Zak Seidov, May 04 2005
Circumference of the circumcircle of the unit square. - Jonathan Sondow, Nov 23 2017
Half-perimeter of the closed curve with implicit Cartesian equation x^2 + y^2 = abs(x) + abs(y). - Stefano Spezia, Oct 20 2020

Examples

			4.4428829381583662470158809900606936986146216893756902230853...
		

Crossrefs

Cf. A063447 (continued fraction), A093954, A153799, A193887, A244976, A247719.

Programs

  • Mathematica
    RealDigits[N[Pi*Sqrt[2], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
  • PARI
    \p 400; Pi * sqrt(2)
    
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b063448.txt", n, " ", d)) \\ Harry J. Smith, Aug 21 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula (1/8) P(1, 64, 12, (32, 0, 8, 0, 8, 0, -4, 0, -1, 0, -1, 0))
    from decimal import Decimal as dec, getcontext
    def BBPpisqrt2(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            twk = dec(12 * k)
            s += f * ( dec(32) / (twk + 1) + dec(8)  / (twk + 3)
                     + dec(8)  / (twk + 5) - dec(4)  / (twk + 7)
                     - dec(1)  / (twk + 9) - dec(1)  / (twk + 11))
            f /= g
        return s / dec(8)
    print(BBPpisqrt2(200))  # Peter Luschny, Nov 03 2023

Formula

Equals Gamma(1/4)*Gamma(3/4). - Jean-François Alcover, Nov 24 2014
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} log(1 + 1/x^4) dx.
Equals Integral_{x=0..oo} log(1 + 2/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/4)/(exp(x) + 1) dx.
Equals Integral_{x=0..2*Pi} 1/(cos(x)^2 + 1) dx = Integral_{x=0..2*Pi} 1/(sin(x)^2 + 1) dx. (End)
From Andrea Pinos, Jul 03 2023: (Start)
Equals (Product_{k=1..4} Gamma(k/8)*Gamma(1 - k/8))^(1/4).
General result: 2*Pi/(4*y)^(1/(2*y)) = (Product_{k=1..y} Gamma(k/(2*y))*Gamma(1 - k/(2*y)) )^(1/y). (End)
From Peter Bala, Oct 22 2023: (Start)
sqrt(2)*Pi = 4 + 8*Sum_{n >= 0} (-1)^n/(16*n^2 + 32*n + 15). See A141759.
In the following the Eisenstein summation convention is assumed: that is,
Sum_{n = -oo..oo} means Limit_{N -> oo} Sum_{n = -N..N}:
sqrt(2)*Pi = 4*Sum_{n = -oo..oo} (-1)^n/(4*n + 1).
More generally, it appears that for k >= 0, k not of the form 4*m + 1,
sqrt(2)*Pi = -sign(cos(Pi*(k - 3)/4)) * 4*(2^floor(k/2))*k! * Sum_{n = -oo..oo} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 2*k + 1)) (verified up to k = 50).
sqrt(2)*Pi = (2^4)*Sum_{n >= 0} (-1)^n * (2*n + 1)/((4*n + 1)*(4*n + 3)) = 512/105 - (2^6)*4!*Sum_{n >= 0} (-1)^n * (2*n + 3)/((4*n + 1)*(4*n + 3)*...*(4*n + 11)).
sqrt(2)*Pi = 4 + (2^3)*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*(4*n + 5)) = 1408/315 - (2^5)*5!*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*...*(4*n + 13)).
sqrt(2)*Pi = 16/3 - (2^4)*3!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*(4*n + 5)*(4*n + 7)) = 14848/3465 + (2^6)*7!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 15)). (End)
From Peter Bala, Nov 19 2023: (Start)
sqrt(2)*Pi = 512*Sum_{k >= 1} (-1)^(k+1) * k^2/((16*k^2 - 1)*(16*k^2 - 9)).
This is the case n = 1 of the more general result: for n >= 1,
sqrt(2)*Pi = (-1)^(n+1) * 2^(n+7) * (2*n)!/(2*n - 1) * Sum_{k >= 1} (-1)^(k+1) * k^2/( Product_{i = 0..n} (16*k^2 - (2*i+1)^2) ). Cf. A334422. (End)
Equals Integral_{x=-oo..oo} (x^2 + 1)/(x^4 + 1) dx. - Kritsada Moomuang, Jun 04 2025

Extensions

Edited by N. J. A. Sloane, May 05 2007
Corrected by Neven Juric, Apr 24 2008

A198148 a(n) = n*(n+2)*(9 - 7*(-1)^n)/16.

Original entry on oeis.org

0, 3, 1, 15, 3, 35, 6, 63, 10, 99, 15, 143, 21, 195, 28, 255, 36, 323, 45, 399, 55, 483, 66, 575, 78, 675, 91, 783, 105, 899, 120, 1023, 136, 1155, 153, 1295, 171, 1443, 190, 1599, 210, 1763, 231, 1935, 253, 2115, 276, 2303, 300, 2499, 325
Offset: 0

Views

Author

Paul Curtz, Oct 21 2011

Keywords

Comments

See, in A181318(n), A060819(n)*A060819(n+p): A060819(n)^2, A064038(n), a(n), A160050(n), A061037(n), A178242(n). The second differences a(n+2)-2*a(n+1)+a(n) = -5, 16, -26, 44, -61, 86, -110, 142, -173, 212, -250, 296, -341, 394, -446, 506, taken modulo 9 are periodic with the palindromic period 4, 7, 1, 8, 2, 5, 7, 7, 7, 5, 2, 8, 1, 7, 4.

Crossrefs

Programs

Formula

a(n) = A060819(n)*A060819(n+2).
a(2n) = n*(n+1)/2 = A000217(n).
a(2n+1) = (2*n+1)*(2*n+3) = A000466(n+1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
a(n+1) - a(n) = (7*(-1)^n *(2*n^2+6*n+3) +18*n +27)/16.
a(n) = A142705(n) / A000034(n+1).
a(n) = A005563(n) / A010689(n+1). - Franklin T. Adams-Watters, Oct 21 2011
G.f. x*(3 +x +6*x^2 -x^4)/(1-x^2)^3. - R. J. Mathar, Oct 25 2011
a(n)*a(n+1) = a(A028552(n)) = A050534(n+2). - Bruno Berselli, Oct 26 2011
a(n) = numerator( binomial((n+2)/2,2) ). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: x*((24+x)*cosh(x) + (3+8*x)*sinh(x))/8. - G. C. Greubel, Sep 20 2018
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Aug 12 2022

A282284 Least common multiple of 3*n+1 and 3*n-1.

Original entry on oeis.org

1, 4, 35, 40, 143, 112, 323, 220, 575, 364, 899, 544, 1295, 760, 1763, 1012, 2303, 1300, 2915, 1624, 3599, 1984, 4355, 2380, 5183, 2812, 6083, 3280, 7055, 3784, 8099, 4324, 9215, 4900, 10403, 5512, 11663, 6160, 12995, 6844, 14399, 7564, 15875, 8320, 17423
Offset: 0

Views

Author

Colin Barker, Feb 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM@@{3n+1,3n-1},{n,0,50}] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{1,4,35,40,143,112,323},60] (* Harvey P. Dale, Sep 05 2020 *)
  • PARI
    vector(60, n, n--; lcm(3*n+1, 3*n-1))
    
  • PARI
    Vec((1+4*x+32*x^2+28*x^3+41*x^4+4*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

Formula

a(n) = 9*n^2-1 for n>0 and even.
a(n) = (9*n^2-1)/2 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
G.f.: (1+4*x+32*x^2+28*x^3+41*x^4+4*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

A282285 Least common multiple of 5*n+1 and 5*n-1.

Original entry on oeis.org

1, 12, 99, 112, 399, 312, 899, 612, 1599, 1012, 2499, 1512, 3599, 2112, 4899, 2812, 6399, 3612, 8099, 4512, 9999, 5512, 12099, 6612, 14399, 7812, 16899, 9112, 19599, 10512, 22499, 12012, 25599, 13612, 28899, 15312, 32399, 17112, 36099, 19012, 39999, 21012
Offset: 0

Views

Author

Colin Barker, Feb 11 2017

Keywords

Crossrefs

Programs

  • PARI
    vector(60, n, n--; lcm(5*n+1, 5*n-1))
    
  • PARI
    Vec((1+12*x+96*x^2+76*x^3+105*x^4+12*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

Formula

a(n) = 25*n^2-1 for n>0 and even.
a(n) = (25*n^2-1)/2 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
G.f.: (1+12*x+96*x^2+76*x^3+105*x^4+12*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

A282286 Least common multiple of 7*n+1 and 7*n-1.

Original entry on oeis.org

1, 24, 195, 220, 783, 612, 1763, 1200, 3135, 1984, 4899, 2964, 7055, 4140, 9603, 5512, 12543, 7080, 15875, 8844, 19599, 10804, 23715, 12960, 28223, 15312, 33123, 17860, 38415, 20604, 44099, 23544, 50175, 26680, 56643, 30012, 63503, 33540, 70755, 37264, 78399
Offset: 0

Views

Author

Colin Barker, Feb 11 2017

Keywords

Crossrefs

Programs

  • PARI
    vector(60, n, n--; lcm(7*n+1, 7*n-1))
    
  • PARI
    Vec((1+24*x+192*x^2+148*x^3+201*x^4+24*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

Formula

a(n) = 49*n^2-1 for n>0 and even.
a(n) = (49*n^2-1)/2 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
G.f.: (1+24*x+192*x^2+148*x^3+201*x^4+24*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

A158487 a(n) = 64*n^2 - 8.

Original entry on oeis.org

56, 248, 568, 1016, 1592, 2296, 3128, 4088, 5176, 6392, 7736, 9208, 10808, 12536, 14392, 16376, 18488, 20728, 23096, 25592, 28216, 30968, 33848, 36856, 39992, 43256, 46648, 50168, 53816, 57592, 61496, 65528, 69688, 73976, 78392, 82936, 87608, 92408, 97336, 102392
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (16*n^2 - 1)^2 - (64*n^2 - 8)*(2*n)^2 = 1 can be written as A141759(n)^2 - a(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012

Crossrefs

Programs

  • Magma
    I:=[56, 248, 568]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {56, 248, 568}, 50] (* Vincenzo Librandi, Feb 09 2012 *)
  • PARI
    for(n=1, 40, print1(64*n^2 - 8", ")); \\ Vincenzo Librandi, Feb 09 2012

Formula

From Vincenzo Librandi, Feb 09 2012: (Start)
G.f.: -8*x*(7 + 10*x - x^2)/(x - 1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)))/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)) - 1)/16. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 8*(exp(x)*(8*x^2 + 8*x - 1) + 1).
a(n) = 8*A157914(n). (End)

A158562 a(n) = 256*n^2 - 16.

Original entry on oeis.org

240, 1008, 2288, 4080, 6384, 9200, 12528, 16368, 20720, 25584, 30960, 36848, 43248, 50160, 57584, 65520, 73968, 82928, 92400, 102384, 112880, 123888, 135408, 147440, 159984, 173040, 186608, 200688, 215280, 230384, 246000, 262128, 278768, 295920, 313584, 331760
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 - 1)^2 - (256*n^2 - 16)*(2*n)^2 = 1 can be written as A158563(n)^2 - a(n)*A005843(n)^2 = 1. [rewritten by R. J. Mathar, Oct 16 2009]

Crossrefs

Programs

  • Magma
    I:=[240,1008,2288]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
    
  • Mathematica
    16(16Range[40]^2-1) (* or *) LinearRecurrence[{3,-3,1},{240,1008,2288},40] (* Harvey P. Dale, Sep 13 2011 *)
  • PARI
    for(n=1, 50, print1(256*n^2-16", ")); \\ Vincenzo Librandi, Feb 15 2012

Formula

G.f.: 16*x*(-15 - 18*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (4 - Pi)/128.
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 4)/128. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 16*(exp(x)*(16*x^2 + 16*x - 1) + 1).
a(n) = 16*A141759(n-1). (End)

A158730 a(n) = 68*n^2 - 1.

Original entry on oeis.org

67, 271, 611, 1087, 1699, 2447, 3331, 4351, 5507, 6799, 8227, 9791, 11491, 13327, 15299, 17407, 19651, 22031, 24547, 27199, 29987, 32911, 35971, 39167, 42499, 45967, 49571, 53311, 57187, 61199, 65347, 69631, 74051, 78607, 83299, 88127, 93091, 98191, 103427, 108799
Offset: 1

Views

Author

Vincenzo Librandi, Mar 25 2009

Keywords

Comments

The identity (68*n^2 - 1)^2 - (1156*n^2 - 34)*(2*n)^2 = 1 can be written as a(n)^2 - A158729(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[67, 271, 611]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {67, 271, 611}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
  • PARI
    for(n=1, 40, print1(68*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 20 2012

Formula

G.f.: x*(-67 - 70*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 22 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(17)))*Pi/(2*sqrt(17)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(17)))*Pi/(2*sqrt(17)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(68*x^2 + 68*x - 1) + 1.
a(n) = A141759(2*n). (End)

Extensions

Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009

A335574 Numbers of the form 16n^2 + 32n + 15 for which the central region of its symmetric representation of sigma consists of two subparts of sizes 4n+7 and 4n+1, n>=0.

Original entry on oeis.org

15, 63, 143, 255, 399, 575, 783, 1023, 1295, 1599, 1935, 2303, 2703, 3599, 4623, 5183, 6399, 7055, 7743, 8463, 9215, 9999, 10815, 11663, 12543, 16383, 17423, 18495, 19599, 20735, 21903, 23103, 24335, 25599, 26895, 28223, 29583, 32399, 36863, 38415, 39999
Offset: 0

Views

Author

Hartmut F. W. Hoft, Jan 26 2021

Keywords

Comments

The sequence is a subsequence of A141759. An alternate description is that for any divisor d <= row(a(k)) - see A235791 - of a(k) = (4n+3)(4n+5) the inequalities d != 4n+3, d != 4n+5 and 2d < 4n+3 hold in addition to 2*(4n+3) > row(a(k)). These conditions state that the symmetric representation of sigma consists of an odd number of regions and that the central region has maximum width 2. With the triangular function T in A235791 we get T[a(k), 4n+3] = T[(4n+3)(4n+5), 4n+3 ] = 2n + 4 and T[a(k), 4n+5] = T[(4n+3)(4n+5), 4n+5 ] = 2n + 1 determining the lengths of the two subparts - see A279387 - as 2*(2n+4) - 1 = 4n + 7 and 2*(2n+1) - 1 = 4n + 1 which results in the pattern [ 3 width 1, (4n + 1) width 2, 3 width 1 ] of unit cells and a total area of 8*(n+1) for the central region. The first region has area 8*(n+1)^2.

Examples

			a(3) = 255 = 3*5*17 = 15*17 = A141759(3) is in the sequence since 2*3 < 15 and 2*5 < 15 with row(255) = 22, and the central region of its symmetric representation of sigma has maximum width 2 and area 32 with subparts 4*3+7 = 19 and 4*3+1= 13.
3173 = 3*5*11*19 = 55*57 = A141759(13) is the first number in A141759 not in this sequence since the central region of the symmetric representation of sigma for 3173 has width 3 and also 2*(3*11) = 66 > 55.
a(37) = 32399 = 179*181 = A141759(44)  is in the sequence since the divisor conditions are vacuously true and the central region of its symmetric representation of sigma has maximum width 2 and area 8*45 = 360 with subparts 4*44 + 7 = 183 and 4*44 + 1 = 177.
35343 = 3*3*3*7*11*17 = (11*17)*(7*27) = 187*189 = A141759(46) is not in the sequence since 2*99, 2*119 and 2*153 exceed 187. While the area of the first region of its symmetric representation of sigma is 8*47^2 = 17672, the area of the central region is 21992 and of maximum width 5.
		

Crossrefs

Programs

  • Mathematica
    (* function segments[ ] is defined in A237270 *)
    centerQ[n_] := Module[{s=Select[segments[n], First[#]!=0&], len}, len=Length[s]; OddQ[len]&&Max[s[[(len+1)/2]]]==2]
    a335574[n_] := Select[Map[(4#+3)(4#+5)&, Range[0, n]], centerQ]
    a335574[50] (* sequence data *)
    (* alternative function based on divisors - much faster computation *)
    divisorQ[n_] := Module[{a=4n+3, b=4n+5, d, r}, r=Floor[(Sqrt[8 a b + 1] - 1)/2]; d=Select[Divisors[a b],#<=r&&#!=a&&#!=b&]; r<2a&&AllTrue[d, 2#
    				

Formula

a(k) = (4n+3)(4n+5) for n = sqrt(a(k)+1)/4 - 1, i.e., a(k) = A141759(n), for k>=0.
Showing 1-9 of 9 results.