A105724 Duplicate of A063448.
4, 4, 4, 2, 8, 8, 2, 9, 3, 8, 1, 5, 8, 3, 6, 6, 2, 4, 7, 0, 1, 5, 8, 8, 0, 9, 9, 0, 0, 6, 0, 6, 9, 3, 6
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - _Bruno Berselli_, May 04 2010 G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ... a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - _Viktar Karatchenia_, Mar 02 2016
a000290 = (^ 2) a000290_list = scanl (+) 0 [1,3..] -- Reinhard Zumkeller, Apr 06 2012
[ n^2 : n in [0..1000]];
A000290 := n->n^2; seq(A000290(n), n=0..50); A000290 := -(1+z)/(z-1)^3; # Simon Plouffe, in his 1992 dissertation, for sequence starting at a(1)
Array[#^2 &, 51, 0] (* Robert G. Wilson v, Aug 01 2014 *) LinearRecurrence[{3, -3, 1}, {0, 1, 4}, 60] (* Vincenzo Librandi, Jul 24 2015 *) CoefficientList[Series[-(x^2 + x)/(x - 1)^3, {x, 0, 50}], x] (* Robert G. Wilson v, Jul 23 2018 *) Range[0, 99]^2 (* Alonso del Arte, Nov 21 2019 *) Join[{0},Accumulate[Range[1,101,2]]] (* Harvey P. Dale, May 11 2025 *)
A000290(n):=n^2$ makelist(A000290(n),n,0,30); /* Martin Ettl, Oct 25 2012 */
{a(n) = n^2};
b000290(maxn)=for(n=0,maxn,print(n," ",n^2);) \\ Anatoly E. Voevudko, Nov 11 2015
# See Hobson link
def A000290(n): return n**2 # Chai Wah Wu, Nov 13 2022
(0 to 59).map(n => n * n) // Alonso del Arte, Oct 07 2019
(define (A000290 n) (* n n)) ;; Antti Karttunen, Oct 06 2017
3.6256099082219083119306851558676720029951676828800654674333...
R:= RealField(100); SetDefaultRealField(R); Gamma(1/4); // G. C. Greubel, Mar 10 2018
evalf(GAMMA(1/4));
RealDigits[Gamma[1/4], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
default(realprecision, 1080); x=gamma(1/4); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b068466.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
Gamma(3/4) = 1.225416702465177645129098303362890526851239248108070611...
SetDefaultRealField(RealField(105)); Gamma(3/4); // G. C. Greubel, Mar 11 2018
evalf(GAMMA(3/4)) ; # R. J. Mathar, Jan 10 2013
RealDigits[Gamma[3/4], 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
default(realprecision, 100); gamma(3/4) \\ G. C. Greubel, Mar 11 2018
1.11072073453959156175397... From _Peter Bala_, Mar 03 2015: (Start) Asymptotic expansion at n = 5000. The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End) From _Peter Bala_, Nov 24 2016: (Start) Case m = 1, n = 1: Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)). We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670. For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) ); # Peter Bala, Mar 09 2015
RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009
Equals 4.590843711998803053204758275929152...
SetDefaultRealField(RealField(100)); Gamma(1/5); // G. C. Greubel, Mar 10 2018
evalf(GAMMA(1/5));
RealDigits[Gamma[1/5],10,120][[1]] (* Harvey P. Dale, May 26 2011 *)
gamma(1/5) \\ G. C. Greubel, Jan 15 2017
2.22144146907918312350794049503034684930731...
SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(2); // G. C. Greubel, Sep 07 2018
RealDigits[Pi/Sqrt[2], 10, 104] // First
default(realprecision, 100); Pi/sqrt(2) \\ G. C. Greubel, Sep 07 2018
0.277680183634897890438492561878793356163413855585980638942837225434777...
RealDigits[Pi/(8*Sqrt[2]), 10, 105] // First
Pi/(8*sqrt(2)) \\ G. C. Greubel, Jul 05 2017
0.8584073464102067615373566167204971158...
RealDigits[4 - Pi, 10, 100][[1]] (* Alonso del Arte, Aug 01 2012 *)
4-Pi
0.55536036726979578088...
R:= RealField(); Pi(R)*Sqrt(2)/8; // G. C. Greubel, Feb 02 2018
RealDigits[(Pi Sqrt[2])/8, 10, 100][[1]]
Pi*sqrt(2)/8 \\ G. C. Greubel, Feb 02 2018
Comments