Groux Roland has authored 9 sequences.
A188144
Binomial transform A140456(n+1) (indecomposable involutions).
Original entry on oeis.org
1, 2, 6, 20, 74, 292, 1218, 5308, 24034, 112484, 542346, 2686268, 13639226, 70863652, 376208706, 2038335580, 11259474754, 63353211332, 362819139978, 2113410084188, 12513610048154, 75274067489284, 459782361574146, 2850369932150908, 17926893505949986, 114337654086861092
Offset: 0
-
b:= proc(n) b(n):= `if`(n<2, n+1, 2*b(n-1) + (n-1)*b(n-2)) end:
g:= proc(n) g(n):= `if`(n<1, -1, -add(g(n-i)*b(i), i=1..n)) end:
a:= n-> g(n+2):
seq(a(n), n=0..28); # Alois P. Heinz, Mar 19 2020
-
nmax = 18; A140456 = CoefficientList[ Series[1 - 1/Total[ CoefficientList[ Series[Exp[x^2/2 + x], {x, 0, nmax + 2}], x]*Range[0, nmax + 2]!* x^Range[0, nmax + 2]], {x, 0, nmax + 2}], x]; a[n_] := Sum[ Binomial[n, k]*A140456[[k + 3]], {k, 0, n}]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 03 2013 *)
-
seq(n)={Vec(1 - 2*x - 1/serlaplace(exp( 2*x + x^2/2 + O(x^3*x^n) )))} \\ Andrew Howroyd, Jan 06 2020
A188287
Convolution of A000085 with itself.
Original entry on oeis.org
1, 2, 5, 12, 32, 88, 260, 800, 2604, 8824, 31340, 115568, 443760, 1763456, 7260256, 30835712, 135124496, 609027360, 2822461648, 13417923008, 65401203584, 326242088064, 1664539966400, 8674167861760, 46140838036160, 250248380068736, 1383064482739392, 7782094359642880
Offset: 0
Original entry on oeis.org
1, 5, 29, 193, 1453, 12209, 113237, 1149241, 12675661, 151095569, 1937411429, 26614052617, 390244490749, 6087782363009, 100728768290645, 1762767028074937, 32542231109506285, 632202858036492593, 12895661952702667205
Offset: 0
-
with(LinearAlgebra):
c:= proc(n) option remember; add(n!/k!, k=0..n) end:
b:= n-> (-1)^(n+1) * Determinant(Matrix(n+2,
(i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end:
seq(a(n), n=0..20); # Alois P. Heinz, Mar 24 2011
-
c[n_] := c[n] = Sum[n!/k!, {k, 0, n}]; b[n_] := (-1)^(n+1)*Det[Table[If[0 <= i+1-j, c[i+1-j], 0], {i, 1, n+2}, {j, 1, n+2}]]; a[n_] := Sum[b[k] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
A187870
Numerator of the coefficient of x^(2n) in the expansion of 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)).
Original entry on oeis.org
4, 44, 428, 10196, 10719068, 25865068, 5472607916, 74185965772, 264698472181028, 2290048394728148, 19435959308462817284, 2753151578548809148, 20586893910854623222436, 134344844535611780572028924
Offset: 0
-
A187870 := proc(n)
1/x^4 -1/(3*x^2) -1/(x^3*arctanh(x)) ;
coeftayl(%,x=0,2*n) ;
numer(%) ;
end proc:
seq(A187870(n),n=0..10) ; # R. J. Mathar, Sep 21 2011
# Or
seq((-1)^n*numer(coeff(series(1/arctan(x),x,2*n+2),x,2*n+1)),n=1..14); # Peter Luschny, Oct 04 2014
-
a[n_] := Sum[(2^(j+1)*Binomial[2*n+3, j]*Sum[(k!*StirlingS1[j+k, j]*StirlingS2[j+1, k])/(j+k)!, {k, 0, j+1}])/(j+1), {j, 0, 2*n+3}]/ (2*n+3); Table[a[n] // Numerator, {n, 0, 13}] (* Jean-François Alcover, Jul 03 2013, after Vladimir Kruchinin's formula in A216272 *)
A187848
a(n) is the moment of order n for the probability density function defined by rho(x)=exp(x-1)/((Ei(x-1))^2+Pi^2) over the interval 1..infinity, with Ei the exponential integral.
Original entry on oeis.org
1, 4, 20, 120, 836, 6608, 58324, 568296, 6060340, 70245856, 879937892, 11853424536, 170963881892, 2629912684784, 42995842035316, 744683072665416, 13624184625098644, 262594854417561856, 5319099368762699012, 112977659152942035192, 2511041582408699358980
Offset: 0
-
with(LinearAlgebra):
c:= proc(n) option remember; add(n!/k!, k=0..n) end:
a:= n-> (-1)^(n+1) *Determinant(Matrix(n+2,
(i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 24 2011
# second Maple program:
b:= proc(n) option remember;
`if`(n<0, -1, -add(b(n-i)*i!, i=1..n+1))
end:
a:= n-> add(b(k+1)*binomial(n, k), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 26 2013
-
b[n_] := b[n] = If[n<0, -1, -Sum[b[n-i]*i!, {i, 1, n+1}]]; a[n_] := Sum[b[k+1] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
A180255
a(n) = n^2 * a(n-1) + n, a(0)=0.
Original entry on oeis.org
0, 1, 6, 57, 916, 22905, 824586, 40404721, 2585902152, 209458074321, 20945807432110, 2534442699285321, 364959748697086236, 61678197529807573897, 12088926715842284483826, 2720008511064514008860865, 696322178832515586268381456, 201237109682597004431562240801
Offset: 0
-
FoldList[#2^2*# + #2 &, Range[0, 20]] (* Paolo Xausa, Jun 19 2025 *)
-
a[0]:0$ a[n]:=n^2*a[n-1]+n$ makelist(a[n], n, 0, 15); /* Bruno Berselli, May 23 2011 */
-
a(n)=if(n==0,0,(n)^2*a(n-1)+(n));
for(n=0,12,print1(a(n),", ")); /* show terms */
A178172
Numerators of coefficients in 1/(log(1+x)*log(1-x)) - 5/12 + 1/x^2 power series.
Original entry on oeis.org
7, 2699, 103669, 1088429, 40938135737, 78638210671, 294591811249, 89540991316447487, 72003397880992782229, 254817218437479631303, 297853453602437702393397023, 3199628601055396119933058397, 558554606804743021307746074767
Offset: 1
-
Rest@ Union@ Numerator@ CoefficientList[ Series[1/(Log[1 + x]*Log[1 - x]) - 5/12 + 1/x^2, {x, 0, 26}], x]
A177354
a(n) is the moment of order n for the density measure 24*x^4*exp(-x)/( (x^4*exp(-x)*Ei(x) - x^3 - x^2 - 2*x - 6)^2 + Pi^2*x^8*exp(-2*x) ) over the interval 0..infinity.
Original entry on oeis.org
5, 35, 305, 3095, 35225, 439775, 5939225, 85961375, 1324702025, 21632195375, 372965377625, 6769644905375, 129049505347625, 2578419996023375, 53898389265685625, 1176832196718869375, 26798832693476455625, 635575680349115699375, 15677971277701873945625, 401729457433222058609375
Offset: 0
- R. Groux, Polynômes orthogonaux et transformations intégrales, Cépadués, 2008, 125-129.
-
a(n)=if(n==0, 5, (1/24)*( (n+6)! -5*(n+5)! -sum(i=0,n-1, (n+4-i)!*a(i) ) ) ); \\ Joerg Arndt, May 04 2013
A167872
A sequence of moments connected with Feynman numbers (A000698): Half the number of Feynman diagrams of order 2(n+1), for the electron self-energy in quantum electrodynamics (QED), i.e., all proper diagrams including Furry vanishing diagrams (those that vanish in 4-dimensional QED because of Furry theorem).
Original entry on oeis.org
1, 3, 21, 207, 2529, 36243, 591381, 10786527, 217179009, 4782674403, 114370025301, 2952426526767, 81864375589089, 2427523337157363, 76683680366193621, 2571609710380950207, 91265370849151405569, 3417956847888948899523
Offset: 0
G.f. = 1 + 3*x + 21*x^2 + 207*x^3 + 2529*x^4 + 36243*x^5 + 591381*x^6 + ...
- Roland Groux. Polynômes orthogonaux et transformations intégrales. Cepadues. 2008. pages 195..206.
-
(* f = A000698 *) f[n_] := f[n] = (2*n - 1)!! - Sum[f[n - k]*(2*k - 1)!!, {k, 1, n - 1}]; a[n_] := a[n] = f[n + 2]/2 - Sum[f[n + 1 - k]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 03 2013, from 3rd formula *)
nmax = 20; CoefficientList[Series[1/(1 + x + ContinuedFractionK[-(k - (-1)^k)*x, 1, {k, 3, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2022, after Peter Bala *)
-
{a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */
Comments