cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099375 Sequence matrix for odd numbers.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 7, 5, 3, 1, 9, 7, 5, 3, 1, 11, 9, 7, 5, 3, 1, 13, 11, 9, 7, 5, 3, 1, 15, 13, 11, 9, 7, 5, 3, 1, 17, 15, 13, 11, 9, 7, 5, 3, 1, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 25, 23, 21, 19, 17, 15, 13, 11, 9
Offset: 0

Views

Author

Paul Barry, Jan 22 2005

Keywords

Comments

Riordan array ((1+x)/(1-x)^2, x).
Inverse matrix is A101038.
Row sums yield (n+1)^2.
Diagonal sums yield sum{k=0..floor(n/2),2(n-2k)+1}=C(n+2,2)=A000217(n+1). Note that sum{k=0..n,2(n-2k)+1}=n+1.
From Paul Curtz, Sep 25 2011. (Start)
Consider from A187870(n-2) and A171080(n)
1 + 1/3 - 4/45 + 44/945 - 428/14175 =1/(1 -1/3 +1/5 -1/7 ..= Pi/4)=4/Pi.
For c(0)=-1, c(1)=1/3, c(2)=4/45, c(3)=44/945, c(4)=428/14175,
c(0)/3 + c(1)=0,
c(0)/5 + c(1)/3 + c(2)=0,
c(0)/7 + c(1)/5 + c(2)/3 + c(3)=0.
Hence a(n+1). Numbers are
-1/3 + 1/3, 1=1,
-1/5 + 1/9 + 4/45, 4=9-5,
-1/7 + 1/15 + 4/135 + 44/945 44=135-63-28. (End)
T(n,k) = A158405(n+1,n+1-k), 1<=k<=n. [Reinhard Zumkeller, Mar 31 2012]
From Peter Bala, Jul 22 2014: (Start)
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A208904. (End)

Examples

			Rows start
1;
3,1;
5,3,1;
7,5,3,1;
9,7,5,3,1;
11,9,7,5,3,1;
13,11,9,7,5,3,1;
		

Crossrefs

Programs

  • Haskell
    a099375 n k = a099375_row n !! k
    a099375_row n = a099375_tabl !! n
    a099375_tabl = iterate (\xs -> (head xs + 2) : xs) [1]
    -- Reinhard Zumkeller, Mar 31 2012

Formula

Number triangle T(n, k)=if(k<=n, 2(n-k)+1, 0)=binomial(2(n-k)+1, 2(n-k))
a(n)=2*A004736(n)-1; a(n)=2*((t*t+3*t+4)/2-n)-1, where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 08 2013

A195466 Denominator of the coefficient of x^(2n) in expansion of 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)).

Original entry on oeis.org

45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 7795859096025, 32157918771103125, 316985199315159375, 3028793579456347828125, 478230565177318078125, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875, 21652861427859241228317809765625
Offset: 0

Views

Author

R. J. Mathar, Sep 21 2011

Keywords

Comments

Prepending 3 to the data gives the denominators of the odd powers in the expansion of 1/arctan(x). - Peter Luschny, Oct 04 2014

Crossrefs

Cf. A187870 (numerator).

Programs

  • Maple
    A195466 := proc(n)
            1/x^4 -1/(3*x^2) -1/(x^3*arctanh(x)) ;
            coeftayl(%,x=0,2*n) ;
            denom(%) ;
    end proc
    seq(A195466(n),n=0..15) ;
    # Or
    seq(denom(coeff(series(1/arctan(x),x,2*n+2),x,2*n+1)),n=1..16); # Peter Luschny, Oct 04 2014
  • Mathematica
    a[n_] := Sum[(2^(j+1)*Binomial[2*n+3, j]*Sum[(k!*StirlingS1[j+k, j]*StirlingS2[j+1, k])/(j+k)!, {k, 0, j+1}])/(j+1), {j, 0, 2*n+3}]/(2*n+3); Table[a[n] // Denominator, {n, 0, 15}] (* Jean-François Alcover, Jul 03 2013, after Vladimir Kruchinin's formula in A216272 *)

Formula

1/x^4 - 1/(3x^2) - 1/(x^3*arctanh x) = 4/45 + 44*x^2/945 + 428*x^4/14175 + 10196*x^6/467775 + ...
Showing 1-2 of 2 results.