cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187870 Numerator of the coefficient of x^(2n) in the expansion of 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)).

Original entry on oeis.org

4, 44, 428, 10196, 10719068, 25865068, 5472607916, 74185965772, 264698472181028, 2290048394728148, 19435959308462817284, 2753151578548809148, 20586893910854623222436, 134344844535611780572028924
Offset: 0

Views

Author

Groux Roland, Mar 14 2011

Keywords

Comments

Let f(x) = 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)) = Sum_{n>=0} r(n)*x^(2n), then a(n) is the numerator of r(n), and r(n) is also the moment of order n for the density rho(x) = 2*sqrt(x)/(4*(arctanh(sqrt(x)))^2 + Pi^2) over the interval [0,1].
r(n) can also be evaluated as (-1)^(n+1)*det(An) with An the square matrix of order n+2 defined by: if j <= i A[i,j] = 1/(2*i-2*j+3), A[i,i+1]=1, if j > i+1 A[i,j]=0.
A very similar sequence of numerators 1, 1, 4, 44, 428, 10196, ... (from there on apparently the same as here) is constructed from the fractions c(0)=-1 and c(n) = Sum_{i=0..n-1} c(i)/(2n-2i+1), which is c(0)=-1, c(1)=1/3, c(2)=4/45, c(3)= 44/945, etc. The recurrence is designed to ensure that Sum_{i=0..n} c(i)/(2n-2i+1) = 0. - Paul Curtz, Sep 15 2011
Prepending 1 to the data gives the (-1)^n times the numerator of the odd powers in the expansion of 1/arctan(x). - Peter Luschny, Oct 04 2014

Crossrefs

Cf. A195466 (denominator).

Programs

  • Maple
    A187870 := proc(n)
            1/x^4 -1/(3*x^2) -1/(x^3*arctanh(x)) ;
            coeftayl(%,x=0,2*n) ;
            numer(%) ;
    end proc:
    seq(A187870(n),n=0..10) ; # R. J. Mathar, Sep 21 2011
    # Or
    seq((-1)^n*numer(coeff(series(1/arctan(x),x,2*n+2),x,2*n+1)),n=1..14); # Peter Luschny, Oct 04 2014
  • Mathematica
    a[n_] := Sum[(2^(j+1)*Binomial[2*n+3, j]*Sum[(k!*StirlingS1[j+k, j]*StirlingS2[j+1, k])/(j+k)!, {k, 0, j+1}])/(j+1), {j, 0, 2*n+3}]/ (2*n+3); Table[a[n] // Numerator, {n, 0, 13}] (* Jean-François Alcover, Jul 03 2013, after Vladimir Kruchinin's formula in A216272 *)

A216272 Numerators of coefficients in expansion of x/arctan(x)-1 (even powers only).

Original entry on oeis.org

1, -4, 44, -428, 10196, -10719068, 25865068, -5472607916, 74185965772, -264698472181028, 2290048394728148, -19435959308462817284, 2753151578548809148, -20586893910854623222436, 134344844535611780572028924
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 16 2013

Keywords

Comments

Setting the offset to 0 gives the numerators of the odd powers in the expansion of 1/arctan(x). The denominators of the coefficients of the expansion of x/arctan(x) are equal to a shifted sequence A195466. - Wolfgang Hintze, Oct 03 2014

Examples

			Expansion of x/arctan(x)-1: x^2/3 - (4*x^4)/45 + (44*x^6)/945 - (428*x^8)/14175 + (10196*x^10)/467775 - (10719068*x^12)/638512875 + (25865068*x^14)/1915538625 -(5472607916*x^16)/488462349375 + (74185965772*x^18)/7795859096025 - (264698472181028*x^20)/32157918771103125. - _Wolfgang Hintze_, Oct 03 2014
		

Crossrefs

Cf. A195466.

Programs

  • Maple
    # Assuming offset 0:
    seq(numer(coeff(series(1/arctan(x),x,2*n+2),x,2*n+1)),n=0..14); # Peter Luschny, Oct 04 2014
  • Mathematica
    b[n_]:=((-1)^(n+1)*Sum[(2^(m+1)*(Sum[(k!*StirlingS2[m+1,k]*StirlingS1[m+k,m])/(m+k)!,{k,0,m+1}]*Binomial [2*n-1,m])/(m+1)),{m,0,2n-1}])/(2*n-1)
    A216272[n_]:=Numerator[b[n]]
    nn=20; Numerator[List@@Normal[Series[x/ArcTan[x]-1,{x,0,2nn}]]/.x->1] (* Wolfgang Hintze, Oct 03 2014 *)
  • Maxima
    a(n):=((-1)^(n+1)*sum((2^(l+1)*(sum((k!*stirling2(l+1,k)*stirling1(l+k,l))/(l+k)!,k,0,l+1))*binomial(2*n-1,l))/(l+1),l,0,2*n-1))/(2*n-1);
    
  • PARI
    a(n) = x = y + O(y^(2*n+2)); numerator(polcoeff(x/atan(x)-1, 2*n)) \\ Michel Marcus, Sep 30 2014

Formula

a(n) = numerator(((-1)^(n+1)*sum(l=0..2*n-1, (2^(l+1)*(sum(k=0..l+1, (k!*stirling2(l+1,k)*stirling1(l+k,l))/(l+k)!,k,0,l+1))*binomial(2*n-1,l))/(l+1)))/(2*n-1)). - clarified by Wolfgang Hintze, Sep 30 2014

Extensions

Definition corrected by Wolfgang Hintze, Sep 30 2014
Showing 1-2 of 2 results.