Peter Bala has authored 765 sequences. Here are the ten most recent ones:
A387248
a(n) = 3/(n + 1) * Catalan(2*n).
Original entry on oeis.org
3, 3, 14, 99, 858, 8398, 89148, 1002915, 11785890, 143291610, 1790214660, 22870640910, 297670187844, 3935861372604, 52749590350072, 715309969142307, 9800129095949682, 135490673691621794, 1888389218820071604, 26510079418051005210, 374589577468070301260, 5324240442532424176260, 76082624294738699098440
Offset: 0
A387250
a(n) = 105/(n + 1) * Catalan(4*n).
Original entry on oeis.org
105, 735, 50050, 5460315, 742511070, 114872107350, 19348562209860, 3461691866723475, 647897423565562310, 125577883051534761666, 25029394494457424675100, 5103876046438721064520350, 1060725331955983336553011500, 224018752093294694626068131340, 47967198494914114482847609250184
Offset: 0
-
seq( 105/((n + 1)*(4*n + 1)) * binomial(8*n, 4*n), n = 0..20);
-
a[n_]:=105/(n+1)*CatalanNumber[4n];Array[a,15,0] (* James C. McMahon, Aug 29 2025 *)
A387249
a(n) = 10/(n + 1) * Catalan(3*n).
Original entry on oeis.org
10, 25, 440, 12155, 416024, 16158075, 682341000, 30582833775, 1433226830360, 69533550916004, 3468169547356640, 176946775343535925, 9199844912200348840, 486018122664268428850, 26029619941269629306160, 1410698658798280045783575, 77251704848334920869407000, 4269325372507953547350453420
Offset: 0
A386877
Triangle read by rows: T(n, k) = n! / (k! * (n/k)!) if k divides n otherwise 0; T(n, 0) = 0^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 6, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 60, 60, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 840, 0, 840, 0, 0, 0, 1, 0, 1, 0, 10080, 0, 0, 0, 0, 0, 1, 0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [0, 1]
[ 2] [0, 1, 1]
[ 3] [0, 1, 0, 1]
[ 4] [0, 1, 6, 0, 1]
[ 5] [0, 1, 0, 0, 0, 1]
[ 6] [0, 1, 60, 60, 0, 0, 1]
[ 7] [0, 1, 0, 0, 0, 0, 0, 1]
[ 8] [0, 1, 840, 0, 840, 0, 0, 0, 1]
[ 9] [0, 1, 0, 10080, 0, 0, 0, 0, 0, 1]
[10] [0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1]
[11] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
-
A386877[n_, k_] := Which[k == 0, Boole[n == 0], Divisible[n, k], n!/(k!*(n/k)!), True, 0];
Table[A386877[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 09 2025 *)
-
F = factorial
def T(n, k):
if k == 0: return 0**n
return F(n)/(F(k)*F(n//k)) if k.divides(n) else 0
for n in range(33): print([T(n,k) for k in srange(n+1)])
A386548
a(n) = [x^n] ((1 - x)/(1 - x + x^2))^n.
Original entry on oeis.org
1, 0, -2, -3, 6, 25, 1, -147, -218, 591, 2223, -484, -14871, -18759, 68353, 222697, -116058, -1629671, -1656989, 8275203, 23266031, -20154144, -184550412, -141418628, 1019061001, 2468408775, -3122976521, -21213927840, -10837119735, 126256071125, 262294667301, -456407675223
Offset: 0
-
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 0 elif n = 2 then -2 else
( 2*(n-1)*(2*n-3)*(19*n^2-60*n+36)*a(n-1) - 2*(190*n^4-1170*n^3+2519*n^2-2229*n+666)*a(n-2) - 2*(n-3)*(2*n-3)*(19*n^2-41*n+18)*a(n-3) )/(3*n*(n-1)*(19*n^2-79*n+78)) fi; end:
seq(a(n), n = 0..30);
-
a[n_]:=SeriesCoefficient[((1 - x)/(1 - x + x^2))^n,{x,0,n}]; Array[a,32,0] (* Stefano Spezia, Jul 29 2025 *)
-
a(n) = my(x='x+O('x^(n+1))); polcoef(((1 - x)/(1 - x + x^2))^n, n); \\ Michel Marcus, Aug 03 2025
A382527
a(n) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j).
Original entry on oeis.org
1, 252, 52920, 12640320, 3632428800, 1264085222400, 529085049292800, 263564384219136000, 154550100069421056000, 105562401683780321280000, 83178863857362412339200000, 74951718050379657373286400000, 76628603945744083606044672000000, 88258468221509704910254374912000000
Offset: 1
-
seq(add((-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j), j = 1..n), n = 1..20);
-
A382527[n_] := n*(5*n - 1)*(2*n + 4)!/2880; Array[A382527, 15] (* Paolo Xausa, Apr 03 2025 *)
A380549
List of numbers of the form i + 3*j + 4*i*j for i, j >= 1.
Original entry on oeis.org
8, 13, 15, 18, 22, 23, 24, 28, 29, 33, 35, 36, 38, 42, 43, 46, 48, 50, 51, 53, 57, 58, 60, 61, 63, 64, 68, 69, 71, 73, 74, 78, 79, 80, 83, 85, 87, 88, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 112, 113, 114, 118, 120, 123, 126, 127, 128, 131, 132, 133, 134, 137, 138, 139, 141, 143, 145, 148, 150
Offset: 1
A380550
List of numbers not of the form i + 3*j + 4*i*j for i, j >= 1.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 32, 34, 37, 39, 40, 41, 44, 45, 47, 49, 52, 54, 55, 56, 59, 62, 65, 66, 67, 70, 72, 75, 76, 77, 81, 82, 84, 86, 89, 91, 94, 95, 102, 104, 107, 109, 110, 111, 115, 116, 117, 119, 121, 122, 124, 125, 129, 130, 135, 136, 140, 142, 144, 146, 147, 149
Offset: 1
Factorization of 4*a(n) + 3 for n = 1..78:
[7, 11, 3*5, 19, 23, 3^3, 31, 3*13, 43, 47, 3*17, 59, 67, 71, 79, 83, 3*29, 103, 107, 3*37, 3*41, 127, 131, 139, 151, 3*53, 163, 167, 179, 3*61, 191, 199, 211, 3*73, 223, 227, 239, 251, 263, 3*89, 271, 283, 3*97, 3*101, 307, 311, 3*109, 331, 3*113, 347, 359, 367, 379, 383, 3*137, 419, 431, 439, 443, 3*149, 463, 467, 3*157, 479, 487, 491, 499, 503, 3*173, 523, 3*181, 547, 563, 571, 3*193, 587, 3*197, 599]
A380583
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^(2*k))/(1 - x^k))^(k^2).
Original entry on oeis.org
1, 1, 13, 82, 665, 5026, 40180, 319677, 2583401, 20965150, 171276238, 1405008925, 11571476120, 95601033542, 792038546739, 6577523807332, 54737967873385, 456368114019558, 3811136362823056, 31873576059000827, 266919720010452190, 2237944814420991135, 18784073017650350445
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 319677 - 1 = (2^2)*(7^3)*233 == 0 (mod 7^3)
a(11) - a(1) = 1405008925 - 1 = (2^2)*3*(11^5)*727 == 0 (mod 11^5)
a(22) - a(2) = 18784073017650350445 - 13 = (2^5)*(11^3)*222773*1979699077 == 0 (mod 11^3)
-
G(x) := series(mul( ( (1 + x^(2*k))/(1 - x^k) )^(k^2), k = 1..22), x, 23):
a:= n-> coeftayl(G(x)^n, x = 0, n):
seq(a(n), n = 0..22);
A380582
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^k)/(1 - x^k))^(k^2) is the g.f. of A206622.
Original entry on oeis.org
1, 2, 24, 236, 2432, 25752, 277152, 3019088, 33186816, 367378814, 4089875024, 45741207228, 513537853952, 5784253405192, 65332622356032, 739706089046736, 8392732289277952, 95401363286044260, 1086232605119042424, 12386037358495697292, 141422619808922418432, 1616691574828234720352
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 3019088 - 2 = 2*(3^3)*(7^3)*163 == 0 (mod 7^3)
a(13) - a(1) = 5784253405192 - 2 = 2*5*(13^4)*20252279 == 0 (mod 13^4)
a(2*11) - a(2) = 18501616629347623668448 - 24 = (2^3)*(11^3)*17*1951*4243*9817*1257719 == 0 (mod 11^3)
a(5^2) - a(5) = 1884578634304981694792832319004 - 256504 = (2^2)*(5^6)*193381* 155926684363405438573 == 0 (mod 5^6)
-
with(numtheory):
G(x) := series(exp(add( (1/4)*(sigma[3](2*k) - sigma[3](k))*x^k/k, k = 1..23 )),x,24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
Comments