A380290 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.
1, 1, 11, 73, 539, 3976, 30107, 229811, 1771803, 13749742, 107305836, 841211966, 6619647419, 52258136399, 413682035393, 3282569032273, 26101575743771, 207930807629248, 1659134361686186, 13258065574274885, 106084302933126364, 849845499077000534, 6815530442695480418, 54712839001004065090
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 229811 - 1 = 2*5*(7^3)*67 == 0 (mod 7^3) a(3*7) - a(3) = 849845499077000534 - 73 = (7^3)*29243*84727410689 == 0 (mod 7^3) a(19) - a(1) = 13258065574274885 - 1 = (2^2)*11*(19^3)*29*26723*56687 == 0 (mod 19^3)
References
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Peter Bala, Notes on A380290 and A380291
Crossrefs
Programs
-
Maple
with(numtheory): G(x) := series(exp(add(sigma[3](k)*x^k/k, k = 1..23)),x,24): seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
-
Mathematica
Table[SeriesCoefficient[Product[1/(1 - x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *) (* or *) Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[3, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
Formula
a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_3(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 8.20432131153340331179513077696629277558952852444670658917204305357709... and c = 0.2513708881073263860977360125648021910598660424705749139651716452651... - Vaclav Kotesovec, Jul 30 2025
Comments