A023871
Expansion of Product_{k>=1} (1 - x^k)^(-k^2).
Original entry on oeis.org
1, 1, 5, 14, 40, 101, 266, 649, 1593, 3765, 8813, 20168, 45649, 101591, 223654, 486046, 1045541, 2225167, 4692421, 9804734, 20318249, 41766843, 85218989, 172628766, 347338117, 694330731, 1379437080, 2724353422, 5350185097, 10449901555, 20304465729, 39254599832
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from Alois P. Heinz)
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
Euler transform of squares (
A000290).
-
m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 29 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^2, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Nov 02 2012
-
max = 31; Series[ Product[ 1/(1-x^k)^k^2, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *)
-
m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^2)) \\ G. C. Greubel, Oct 29 2018
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: n^2)
print([b(n) for n in range(32)]) # Peter Luschny, Nov 11 2020
A255672
Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n).
Original entry on oeis.org
1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583
Offset: 0
-
b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2015
-
Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)
A380581
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^4) is the g.f. of A023873.
Original entry on oeis.org
1, 1, 35, 397, 5075, 67126, 897911, 12144945, 165880531, 2280262825, 31522512910, 437730330357, 6101414176535, 85317965576325, 1196299277106675, 16813979471920522, 236812229975204563, 3341448338530887015, 47225228515043980715, 668417245247747877735, 9473101371364286661950, 134416752857691389968377, 1909344928242571795580255
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 12144945 - 1 = (2^4)*(7^3)*2213 = 0 (mod 7^3)
a(3*7) - a(3) = 134416752857691389968377 - 397 = (2^2)*5*(7^3)*17*223*5168630662682423 == 0 (mod 7^3)
a(2*11) - a(2) = 1909344928242571795580255 - 35 = (2^2)*(3^4)*5*7*(11^4)*17*23* 29411951377843 == 0 (mod 11^4)
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
-
with(numtheory):
G(x) := series(exp(add(sigma[5](k)*x^k/k, k = 1..22)), x, 23):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..22);
A380291
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.
Original entry on oeis.org
1, 1, 9, 64, 425, 3026, 21672, 157095, 1149289, 8464240, 62683134, 466307865, 3482008904, 26083955002, 195932407939, 1475267031164, 11131100990825, 84140066313620, 637054366975740, 4830417047590165, 36674477204674750, 278779034863684377, 2121418004609211361, 16159262748227985561
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 157095 - 1 = 2*(7^3)*229 == 0 (mod 7^3)
a(11) - a(1) = 466307865 - 1 = (2^3)*(11^3)*43793 == 0 (mod 11^3)
a(3*7) - a(3) = 278779034863684377 - 64 = (7^4)*43*26891*100413601 == 0 (mod 7^4)
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
-
with(numtheory):
s_3 := n-> add((-1)^(n/d+1)*d^3, d in divisors(n)):
G(x) := series(exp(add(s_3(k)*x^k/k, k = 1..23)), x, 24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
-
Table[SeriesCoefficient[Product[(1 + x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
(* or *)
Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^3, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
A380582
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^k)/(1 - x^k))^(k^2) is the g.f. of A206622.
Original entry on oeis.org
1, 2, 24, 236, 2432, 25752, 277152, 3019088, 33186816, 367378814, 4089875024, 45741207228, 513537853952, 5784253405192, 65332622356032, 739706089046736, 8392732289277952, 95401363286044260, 1086232605119042424, 12386037358495697292, 141422619808922418432, 1616691574828234720352
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 3019088 - 2 = 2*(3^3)*(7^3)*163 == 0 (mod 7^3)
a(13) - a(1) = 5784253405192 - 2 = 2*5*(13^4)*20252279 == 0 (mod 13^4)
a(2*11) - a(2) = 18501616629347623668448 - 24 = (2^3)*(11^3)*17*1951*4243*9817*1257719 == 0 (mod 11^3)
a(5^2) - a(5) = 1884578634304981694792832319004 - 256504 = (2^2)*(5^6)*193381* 155926684363405438573 == 0 (mod 5^6)
-
with(numtheory):
G(x) := series(exp(add( (1/4)*(sigma[3](2*k) - sigma[3](k))*x^k/k, k = 1..23 )),x,24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
A380583
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^(2*k))/(1 - x^k))^(k^2).
Original entry on oeis.org
1, 1, 13, 82, 665, 5026, 40180, 319677, 2583401, 20965150, 171276238, 1405008925, 11571476120, 95601033542, 792038546739, 6577523807332, 54737967873385, 456368114019558, 3811136362823056, 31873576059000827, 266919720010452190, 2237944814420991135, 18784073017650350445
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 319677 - 1 = (2^2)*(7^3)*233 == 0 (mod 7^3)
a(11) - a(1) = 1405008925 - 1 = (2^2)*3*(11^5)*727 == 0 (mod 11^5)
a(22) - a(2) = 18784073017650350445 - 13 = (2^5)*(11^3)*222773*1979699077 == 0 (mod 11^3)
-
G(x) := series(mul( ( (1 + x^(2*k))/(1 - x^k) )^(k^2), k = 1..22), x, 23):
a:= n-> coeftayl(G(x)^n, x = 0, n):
seq(a(n), n = 0..22);
A386720
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^3) is the g.f. of A023872.
Original entry on oeis.org
1, 1, 19, 163, 1571, 15276, 152029, 1525420, 15460771, 157716235, 1617959044, 16672687769, 172459185341, 1789587777849, 18621317408384, 194222638392213, 2029985619026851, 21256104343844595, 222937740908641405, 2341629730618924374, 24627719497316157396, 259326672761381979574
Offset: 0
-
with(numtheory):
G(x) := series(exp(add(sigma[4](k)*x^k/k, k = 1..25)), x, 26):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..25);
-
Table[SeriesCoefficient[Product[1/(1-x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[4, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
Showing 1-7 of 7 results.
Comments