cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A023871 Expansion of Product_{k>=1} (1 - x^k)^(-k^2).

Original entry on oeis.org

1, 1, 5, 14, 40, 101, 266, 649, 1593, 3765, 8813, 20168, 45649, 101591, 223654, 486046, 1045541, 2225167, 4692421, 9804734, 20318249, 41766843, 85218989, 172628766, 347338117, 694330731, 1379437080, 2724353422, 5350185097, 10449901555, 20304465729, 39254599832
Offset: 0

Views

Author

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1 - x^k)^(c2*k^2 + c1*k + c0) and c2 > 0, then a(n) ~ exp(4*Pi * c2^(1/4) * n^(3/4) / (3*15^(1/4)) + c1*Zeta(3) / Pi^2 * sqrt(15*n/c2) + (Pi * 5^(1/4) * c0 / (2*3^(3/4) * c2^(1/4)) - 15^(5/4) * c1^2 * Zeta(3)^2 / (2*c2^(5/4) * Pi^5)) * n^(1/4) + c1/12 + 75 * c1^3 * Zeta(3)^3 / (c2^2 * Pi^8) - 5*c0 * c1 * Zeta(3) / (4*c2 * Pi^2) - c2*Zeta(3) / (4*Pi^2)) * Pi^(c1/12) * (c2/15)^(1/8 + c0/8 + c1/48) / (A^c1 * 2^((c0 + 3)/2) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
Let A(x) = Product_{k >= 1} (1 - x^k)^(-k^2). The sequence defined by u(n) := [x^n] A(x)^n is conjectured to satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 7 and all positive integers n and r. See A380290. - Peter Bala, Feb 02 2025
a(n) is the number of partitions of n where there are k^2 sorts of part k. - Joerg Arndt, Feb 02 2025

Crossrefs

Euler transform of squares (A000290).
Column k=2 of A144048. - Alois P. Heinz, Nov 02 2012

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 29 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*d^2, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35); # Alois P. Heinz, Nov 02 2012
  • Mathematica
    max = 31; Series[ Product[ 1/(1-x^k)^k^2, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^2)) \\ G. C. Greubel, Oct 29 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n^2)
    print([b(n) for n in range(32)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = 1/n * Sum_{k=1..n} a(n-k)*sigma_3(k), n > 0, a(0)=1, where sigma_3(n) = A001158(n) = sum of cubes of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: Prod_{n>=1} exp(sigma_3(n)*x^n/n), where sigma_3(n) is the sum of cubes of divisors of n (=A001158(n)). - N-E. Fahssi, Mar 28 2010
G.f. (conjectured): 1/Product_{n>=1} E(x^n)^J2(n) where E(x) = Product_{n>=1} 1-x^n and J2(n) = A007434(n) [follows from the identity Sum_{d|n} J2(d) = n^2 - Peter Bala, Feb 02 2025]. - Joerg Arndt, Jan 25 2011
a(n) ~ exp(4 * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) / (4*Pi^2)) / (2^(3/2) * 15^(1/8) * n^(5/8)), where Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 27 2015

Extensions

Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006

A255672 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n).

Original entry on oeis.org

1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2015

Keywords

Comments

Number of partitions of n when parts i are of n*i kinds. - Alois P. Heinz, Nov 23 2018
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Main diagonal of A255961.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 6.468409145117839606941857350154192468889057616577..., c = 0.25864792865819067933968646380369970564... . - Vaclav Kotesovec, Mar 01 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A380581 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^4) is the g.f. of A023873.

Original entry on oeis.org

1, 1, 35, 397, 5075, 67126, 897911, 12144945, 165880531, 2280262825, 31522512910, 437730330357, 6101414176535, 85317965576325, 1196299277106675, 16813979471920522, 236812229975204563, 3341448338530887015, 47225228515043980715, 668417245247747877735, 9473101371364286661950, 134416752857691389968377, 1909344928242571795580255
Offset: 0

Views

Author

Peter Bala, Jan 27 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for this sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 5 (checked up to p = 61).
More generally, we conjecture that the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 5 and positive integers n and r. Some examples are given below.
Let A >= 1 and B be integers. Define a sequence {u(n) : n >= 0} by u(n) = [x^(A*n)] G(x)^(B*n), so the present sequence is the case A = B = 1. We conjecture that the above supercongruences also hold for the sequence {u(n)}.

Examples

			Examples of supercongruences:
a(7) - a(1) = 12144945 - 1 = (2^4)*(7^3)*2213 = 0 (mod 7^3)
a(3*7) - a(3) = 134416752857691389968377 - 397 = (2^2)*5*(7^3)*17*223*5168630662682423 == 0 (mod 7^3)
a(2*11) - a(2) = 1909344928242571795580255 - 35 = (2^2)*(3^4)*5*7*(11^4)*17*23* 29411951377843 == 0 (mod 11^4)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[5](k)*x^k/k, k = 1..22)), x, 23):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..22);

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_5(k)*x^k/k).

A380291 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.

Original entry on oeis.org

1, 1, 9, 64, 425, 3026, 21672, 157095, 1149289, 8464240, 62683134, 466307865, 3482008904, 26083955002, 195932407939, 1475267031164, 11131100990825, 84140066313620, 637054366975740, 4830417047590165, 36674477204674750, 278779034863684377, 2121418004609211361, 16159262748227985561
Offset: 0

Views

Author

Peter Bala, Jan 19 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for the present sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7 (checked up to p = 61).
More generally, we conjecture that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 7 and positive integers n and r. Some examples are given below.

Examples

			Examples of supercongruences:
a(7) - a(1) = 157095 - 1 = 2*(7^3)*229 == 0 (mod 7^3)
a(11) - a(1) = 466307865 - 1 = (2^3)*(11^3)*43793 == 0 (mod 11^3)
a(3*7) - a(3) = 278779034863684377 - 64 = (7^4)*43*26891*100413601 == 0 (mod 7^4)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    s_3 := n-> add((-1)^(n/d+1)*d^3, d in divisors(n)):
    G(x) := series(exp(add(s_3(k)*x^k/k, k = 1..23)), x, 24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
    (* or *)
    Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^3, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} s_3(k)*x^k/k), where s_3(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3 = A078307(n).
a(n) ~ c * d^n / sqrt(n), where d = 7.7846790125019502578773343468308844201627754275100035492213697757399421948... and c = 0.2484592487737716543953469621097743519172686743284742545545347906986158... - Vaclav Kotesovec, Jul 30 2025

A380582 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^k)/(1 - x^k))^(k^2) is the g.f. of A206622.

Original entry on oeis.org

1, 2, 24, 236, 2432, 25752, 277152, 3019088, 33186816, 367378814, 4089875024, 45741207228, 513537853952, 5784253405192, 65332622356032, 739706089046736, 8392732289277952, 95401363286044260, 1086232605119042424, 12386037358495697292, 141422619808922418432, 1616691574828234720352
Offset: 0

Views

Author

Peter Bala, Jan 27 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for this sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 5 (checked up to p = 61).
More generally, we conjecture that the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 5 and positive integers n and r. Some examples are given below.
Let A, B be integers and let C be a positive integer. Define u(n) = [x^(C*n)] Product_{k >= 1} ((1 + x^k)^A * (1 - x^k)^B)^(k^2). The present sequence is the case A = 1, B = -1 and C = 1. We conjecture that the above supercongruences also hold for the sequence {u(n)} for all primes p >= 7.

Examples

			Examples of supercongruences:
a(7) - a(1) = 3019088 - 2 = 2*(3^3)*(7^3)*163 == 0 (mod 7^3)
a(13) - a(1) = 5784253405192 - 2 = 2*5*(13^4)*20252279 == 0 (mod 13^4)
a(2*11) - a(2) = 18501616629347623668448 - 24 = (2^3)*(11^3)*17*1951*4243*9817*1257719 == 0 (mod 11^3)
a(5^2) - a(5) = 1884578634304981694792832319004 - 256504 = (2^2)*(5^6)*193381* 155926684363405438573 == 0 (mod 5^6)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add( (1/4)*(sigma[3](2*k) - sigma[3](k))*x^k/k, k = 1..23 )),x,24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);

Formula

a(n) = [x^n] exp( n*Sum_{k >= 1} (sigma_3(2*k) - sigma_3(k))/4 * x^k/k ).

A380583 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^(2*k))/(1 - x^k))^(k^2).

Original entry on oeis.org

1, 1, 13, 82, 665, 5026, 40180, 319677, 2583401, 20965150, 171276238, 1405008925, 11571476120, 95601033542, 792038546739, 6577523807332, 54737967873385, 456368114019558, 3811136362823056, 31873576059000827, 266919720010452190, 2237944814420991135, 18784073017650350445
Offset: 0

Views

Author

Peter Bala, Jan 27 2025

Keywords

Comments

The sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and for all positive integers n and r. In fact, stronger congruences appear to hold for this sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7.
More generally, we conjecture that the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 7 and positive integers n and r. Some examples are given below.
Let A and B be integers. Let C be a positive integer. Define u(n) = [x^(C*n)] Product_{k >= 1} ((1 + - x^(2*k))^A * (1 + - x^k)^B)^(k^2). The present sequence is the case A = 1, B = -1 and C = 1, with the appropriate choice of signs. We conjecture that the above supercongruences also hold for the sequence {u(n)} for all primes p >= 7.

Examples

			Examples of supercongruences:
a(7) - a(1) = 319677 - 1 = (2^2)*(7^3)*233 == 0 (mod 7^3)
a(11) - a(1) = 1405008925 - 1 = (2^2)*3*(11^5)*727 == 0 (mod 11^5)
a(22) - a(2) = 18784073017650350445 - 13 = (2^5)*(11^3)*222773*1979699077 == 0 (mod 11^3)
		

Crossrefs

Programs

  • Maple
    G(x) := series(mul( ( (1 + x^(2*k))/(1 - x^k) )^(k^2), k = 1..22), x, 23):
    a:= n-> coeftayl(G(x)^n, x = 0, n):
    seq(a(n), n = 0..22);

A386720 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^3) is the g.f. of A023872.

Original entry on oeis.org

1, 1, 19, 163, 1571, 15276, 152029, 1525420, 15460771, 157716235, 1617959044, 16672687769, 172459185341, 1789587777849, 18621317408384, 194222638392213, 2029985619026851, 21256104343844595, 222937740908641405, 2341629730618924374, 24627719497316157396, 259326672761381979574
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2025

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[4](k)*x^k/k, k = 1..25)), x, 26):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[4, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_4(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 10.783710654896500462544161711323081108292517438268962307143535279238... and c = 0.2464683956609371456774144752559018514863700235623819263696832303304...
Showing 1-7 of 7 results.