cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A008485 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Number of partitions of n into parts of n kinds. - Vladeta Jovovic, Sep 08 2002
Main diagonal of A144064. - Omar E. Pol, Jun 27 2012
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p >= 3. Cf. A270913. (End)

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
    Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    
  • PARI
    {a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */

Formula

a(n) = Sum_{pi} Product_{i=1..n} binomial(k_i+n-1, k_i) where pi runs through all nonnegative solutions of k_1+2*k_2+...+n*k_n=n. a(n) = b(n, n) where b(n, m)= m/n*Sum_{i=1..n} sigma(i)*b(n-i, m) is recurrence for number of partitions of n into parts of m kinds. - Vladeta Jovovic, Sep 08 2002
Equals the logarithmic derivative of A109085, the g.f. of which is (1/x)*Series_Reversion(x*eta(x)). - Paul D. Hanna, Apr 05 2012
Let G(x) = exp( Sum_{n>=1} a(n)*x^n/n ), then G(x) = 1/Product_{n>=1} (1-x^n*G(x)^n) is the g.f. of A109085. - Paul D. Hanna, Apr 05 2012
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165..., c = A327279 = 0.26801521271073331568695383828... . - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 30 2015

A255961 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
Offset: 0

Views

Author

Alois P. Heinz, Mar 11 2015

Keywords

Comments

A(n,k) is the number of partitions of n when parts i are of k*i kinds. A(2,2) = 7: [2a], [2b], [2c], [2d], [1a,1a], [1a,1b], [1b,1b].

Examples

			Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6,     7, ...
  0,  3,   7,   12,   18,    25,    33,    42, ...
  0,  6,  18,   37,   64,   100,   146,   203, ...
  0, 13,  47,  111,  215,   370,   588,   882, ...
  0, 24, 110,  303,  660,  1251,  2160,  3486, ...
  0, 48, 258,  804, 1938,  4005,  7459, 12880, ...
  0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
		

Crossrefs

Rows n=0-3 give: A000012, A001477, A055998, A101853.
Main diagonal gives A255672.
Antidiagonal sums give A299166.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j*k).
T(n,k) = Sum_{i=0..k} C(k,i) * A257673(n,k-i).

A252782 a(n) = n-th term of Euler transform of n-th powers.

Original entry on oeis.org

1, 1, 5, 36, 490, 12729, 689896, 70223666, 13803604854, 5567490203192, 4386006155453382, 6711625359213752077, 21048250447828058144403, 131214686495783317936950378, 1603891839732647136012816743764, 40296598014204065945778862754895836
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2014

Keywords

Crossrefs

Main diagonal of A144048.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
           d*d^k, d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k^n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(j^n).
Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861... . - Vaclav Kotesovec, Mar 25 2016

A270922 Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k*n).

Original entry on oeis.org

1, 1, 5, 28, 141, 751, 4064, 22198, 122381, 679375, 3792155, 21263331, 119679000, 675763232, 3826165838, 21715370653, 123502583565, 703694143160, 4016079632039, 22953901314649, 131366012754691, 752709483123304, 4317601694413683, 24790635783551008
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 5.86811560195778704624328861800917668... and c = 0.25351514412215050116013727161633502...
a(n) = [x^n] exp(n*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A270917 Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k^n).

Original entry on oeis.org

1, 1, 4, 35, 457, 12421, 678101, 69540142, 13730026114, 5551573311817, 4379029522335786, 6705866900012021577, 21038900445652125741759, 131183458646068931932668114, 1603688863449847489871671547959, 40294004792352613617780682256221711
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Crossrefs

Main diagonal of A284992.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...

A380290 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.

Original entry on oeis.org

1, 1, 11, 73, 539, 3976, 30107, 229811, 1771803, 13749742, 107305836, 841211966, 6619647419, 52258136399, 413682035393, 3282569032273, 26101575743771, 207930807629248, 1659134361686186, 13258065574274885, 106084302933126364, 849845499077000534, 6815530442695480418, 54712839001004065090
Offset: 0

Views

Author

Peter Bala, Jan 19 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for the present sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7 (checked up to p = 61).
More generally, we conjecture that the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 7 and positive integers n and r. Some examples are given below.

Examples

			Examples of supercongruences:
a(7) - a(1) = 229811 - 1 = 2*5*(7^3)*67 == 0 (mod 7^3)
a(3*7) - a(3) = 849845499077000534 - 73 = (7^3)*29243*84727410689 == 0 (mod 7^3)
a(19) - a(1) = 13258065574274885 - 1 = (2^2)*11*(19^3)*29*26723*56687 == 0 (mod 19^3)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[3](k)*x^k/k, k = 1..23)),x,24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
    (* or *)
    Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[3, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_3(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 8.20432131153340331179513077696629277558952852444670658917204305357709... and c = 0.2513708881073263860977360125648021910598660424705749139651716452651... - Vaclav Kotesovec, Jul 30 2025

A270924 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k*n).

Original entry on oeis.org

1, 2, 16, 128, 1056, 8952, 77200, 673948, 5937792, 52689170, 470210016, 4215834328, 37945215552, 342650763392, 3102866408560, 28166168335128, 256220106742272, 2335126111557564, 21317113277158336, 194890649121580880, 1784158030393621056, 16353089279998330456
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 9.38812912875337022533876219516002188057967... and c = 0.2845468763296311652189248055322905919858...

A281266 Main diagonal of A279928.

Original entry on oeis.org

1, -1, -1, -1, 23, -51, 35, -197, 1367, -3889, 7649, -26258, 112739, -350676, 939623, -3063201, 11022167, -35276497, 106320311, -344831533, 1164544273, -3765456206, 11890410454, -38631658591, 127610160227, -414671018176, 1335126443260, -4348160271568
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[SeriesCoefficient[Product[1/(1 + x^k)^(m*k), {k, 1, m}], {x, 0, m}], {m, 0, nmax}] (* Vaclav Kotesovec, Apr 17 2017 *)

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = 3.31585574856163070436... and c = 0.20250147602443379616... - Vaclav Kotesovec, Apr 17 2017
a(n) = [x^n] exp(n*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A281267 Main diagonal of A276554.

Original entry on oeis.org

1, -1, -3, 8, 13, -51, -120, 538, 781, -5419, -3053, 47673, 5080, -427740, 136462, 3922383, -3278067, -34819588, 48561567, 299316651, -603368637, -2509708844, 6948730643, 20210062532, -76150197416, -152569240051, 801154765564, 1039352472008, -8158396721266
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2017

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    nmax = 40; Table[SeriesCoefficient[Product[(1 - x^k)^(n*k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 17 2017 *)

Formula

a(n) = [x^n] exp(-n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A301455 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x)^k)^k.

Original entry on oeis.org

1, 1, 4, 16, 74, 360, 1840, 9698, 52409, 288697, 1615275, 9153850, 52434770, 303104532, 1765920785, 10358843904, 61129390652, 362650003202, 2161590275029, 12938838382316, 77745063802045, 468760264760369, 2835272729215565, 17198394229862818, 104598950726341920, 637709136315071504
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 74*x^4 + 360*x^5 + 1840*x^6 + 9698*x^7 + 52409*x^8 + 288697*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 215*x^4/4 + 1251*x^5/5 + 7459*x^6/6 + 44885*x^7/7 + 272727*x^8/8 + ... + A255672(n)*x^n/n + ...
		

Crossrefs

Formula

G.f. A(x) satisfies: A(x) = exp(Sum_{k>=1} sigma_2(k)*x^k*A(x)^k/k).
Showing 1-10 of 14 results. Next