A008485
Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.
Original entry on oeis.org
1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0
T. Forbes (anthony.d.forbes(AT)googlemail.com)
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
-
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
-
{a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */
A255961
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 7, 12, 18, 25, 33, 42, ...
0, 6, 18, 37, 64, 100, 146, 203, ...
0, 13, 47, 111, 215, 370, 588, 882, ...
0, 24, 110, 303, 660, 1251, 2160, 3486, ...
0, 48, 258, 804, 1938, 4005, 7459, 12880, ...
0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
Columns k=0-10 give:
A000007,
A000219,
A161870,
A255610,
A255611,
A255612,
A255613,
A255614,
A193427,
A316461,
A316462.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)
A252782
a(n) = n-th term of Euler transform of n-th powers.
Original entry on oeis.org
1, 1, 5, 36, 490, 12729, 689896, 70223666, 13803604854, 5567490203192, 4386006155453382, 6711625359213752077, 21048250447828058144403, 131214686495783317936950378, 1603891839732647136012816743764, 40296598014204065945778862754895836
Offset: 0
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*d^k, d=divisors(j))*A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..20);
-
Table[SeriesCoefficient[Product[1/(1-x^k)^(k^n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)
A270922
Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k*n).
Original entry on oeis.org
1, 1, 5, 28, 141, 751, 4064, 22198, 122381, 679375, 3792155, 21263331, 119679000, 675763232, 3826165838, 21715370653, 123502583565, 703694143160, 4016079632039, 22953901314649, 131366012754691, 752709483123304, 4317601694413683, 24790635783551008
Offset: 0
-
Table[SeriesCoefficient[Product[(1+x^k)^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
A270917
Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k^n).
Original entry on oeis.org
1, 1, 4, 35, 457, 12421, 678101, 69540142, 13730026114, 5551573311817, 4379029522335786, 6705866900012021577, 21038900445652125741759, 131183458646068931932668114, 1603688863449847489871671547959, 40294004792352613617780682256221711
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 16 2017
-
Table[SeriesCoefficient[Product[(1+x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
A380290
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.
Original entry on oeis.org
1, 1, 11, 73, 539, 3976, 30107, 229811, 1771803, 13749742, 107305836, 841211966, 6619647419, 52258136399, 413682035393, 3282569032273, 26101575743771, 207930807629248, 1659134361686186, 13258065574274885, 106084302933126364, 849845499077000534, 6815530442695480418, 54712839001004065090
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 229811 - 1 = 2*5*(7^3)*67 == 0 (mod 7^3)
a(3*7) - a(3) = 849845499077000534 - 73 = (7^3)*29243*84727410689 == 0 (mod 7^3)
a(19) - a(1) = 13258065574274885 - 1 = (2^2)*11*(19^3)*29*26723*56687 == 0 (mod 19^3)
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
-
with(numtheory):
G(x) := series(exp(add(sigma[3](k)*x^k/k, k = 1..23)),x,24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
-
Table[SeriesCoefficient[Product[1/(1 - x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
(* or *)
Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[3, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
A270924
Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k*n).
Original entry on oeis.org
1, 2, 16, 128, 1056, 8952, 77200, 673948, 5937792, 52689170, 470210016, 4215834328, 37945215552, 342650763392, 3102866408560, 28166168335128, 256220106742272, 2335126111557564, 21317113277158336, 194890649121580880, 1784158030393621056, 16353089279998330456
Offset: 0
-
Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Original entry on oeis.org
1, -1, -1, -1, 23, -51, 35, -197, 1367, -3889, 7649, -26258, 112739, -350676, 939623, -3063201, 11022167, -35276497, 106320311, -344831533, 1164544273, -3765456206, 11890410454, -38631658591, 127610160227, -414671018176, 1335126443260, -4348160271568
Offset: 0
-
nmax = 30; Table[SeriesCoefficient[Product[1/(1 + x^k)^(m*k), {k, 1, m}], {x, 0, m}], {m, 0, nmax}] (* Vaclav Kotesovec, Apr 17 2017 *)
Original entry on oeis.org
1, -1, -3, 8, 13, -51, -120, 538, 781, -5419, -3053, 47673, 5080, -427740, 136462, 3922383, -3278067, -34819588, 48561567, 299316651, -603368637, -2509708844, 6948730643, 20210062532, -76150197416, -152569240051, 801154765564, 1039352472008, -8158396721266
Offset: 0
-
nmax = 40; Table[SeriesCoefficient[Product[(1 - x^k)^(n*k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 17 2017 *)
A301455
G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x)^k)^k.
Original entry on oeis.org
1, 1, 4, 16, 74, 360, 1840, 9698, 52409, 288697, 1615275, 9153850, 52434770, 303104532, 1765920785, 10358843904, 61129390652, 362650003202, 2161590275029, 12938838382316, 77745063802045, 468760264760369, 2835272729215565, 17198394229862818, 104598950726341920, 637709136315071504
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 74*x^4 + 360*x^5 + 1840*x^6 + 9698*x^7 + 52409*x^8 + 288697*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 215*x^4/4 + 1251*x^5/5 + 7459*x^6/6 + 44885*x^7/7 + 272727*x^8/8 + ... + A255672(n)*x^n/n + ...
Showing 1-10 of 14 results.
Comments