cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A270915 Decimal expansion of a constant related to the asymptotics of A008485.

Original entry on oeis.org

5, 3, 5, 2, 7, 0, 1, 3, 3, 3, 4, 8, 6, 6, 4, 2, 6, 8, 7, 7, 7, 2, 4, 1, 5, 8, 1, 4, 1, 6, 5, 3, 2, 7, 8, 7, 9, 8, 5, 1, 4, 8, 3, 2, 7, 1, 2, 8, 6, 9, 4, 7, 0, 9, 7, 3, 1, 9, 6, 9, 0, 7, 5, 6, 0, 6, 4, 1, 0, 2, 1, 5, 1, 2, 6, 7, 5, 3, 1, 5, 5, 2, 2, 3, 2, 3, 4, 2, 7, 6, 4, 4, 7, 8, 8, 5, 4, 2, 2, 8, 2, 2, 8, 1, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Examples

			5.352701333486642687772415814165327879851483271286947097319690756...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{s == 1/QPochhammer[r*s], QPochhammer[r*s] + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

Equals limit n->infinity A008485(n)^(1/n).

A309986 Convolution of A270913 and A008485.

Original entry on oeis.org

1, 2, 9, 43, 206, 999, 4915, 24372, 121698, 611244, 3085612, 15645347, 79639602, 406809249, 2084567381, 10712007629, 55187254157, 284981396231, 1474729519719, 7646180479889, 39713643612380, 206600871071930, 1076372569004514, 5615363541987786, 29331204404385053
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A270913[n_] := SeriesCoefficient[Product[(1 + x^k)^n, {k, 1, n}], {x, 0, n}];
    A008485[n_] := SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A008485[k]*A270913[n-k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687... and c = 0.446705640528056029457240607298917821281915554...

A327215 Self-convolution of A008485.

Original entry on oeis.org

1, 2, 11, 54, 279, 1442, 7530, 39474, 207693, 1095522, 5790116, 30650038, 162451560, 861920492, 4577055823, 24323292984, 129338944225, 688128700422, 3662798123481, 19504467792378, 103899170100154, 553642311668244, 2951010332435759, 15733439067954134
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A008485[n_]:=SeriesCoefficient[Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A008485[k]*A008485[n-k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c^2 * Pi * d^n, where d = A270915 = 5.352701333486642687772415814165... and c = A327279 = 0.26801521271073331568695383828... (see A008485).

A327279 Decimal expansion of a constant related to A008485 and A327215.

Original entry on oeis.org

2, 6, 8, 0, 1, 5, 2, 1, 2, 7, 1, 0, 7, 3, 3, 3, 1, 5, 6, 8, 6, 9, 5, 3, 8, 3, 8, 2, 8, 0, 3, 2, 8, 6, 7, 9, 5, 0, 0, 6, 6, 6, 7, 5, 7, 2, 4, 2, 0, 3, 9, 4, 2, 6, 4, 4, 5, 9, 0, 4, 1, 5, 8, 4, 6, 9, 5, 3, 9, 0, 9, 4, 9, 9, 2, 6, 7, 0, 6, 0, 0, 5, 4, 3, 3, 5, 0, 1, 7, 4, 3, 9, 4, 2, 2, 3, 1, 2, 9, 5, 4, 0, 8, 3, 2, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2019

Keywords

Examples

			0.26801521271073331568695383828032867950066675724203942644590415846953909499267...
		

Crossrefs

Programs

  • Mathematica
    val = Sqrt[(1 - r*s)*(Log[r*s]^2/(2*Pi*(4*ArcTanh[1 - 2*r*s]*(r*s + (-1 + r*s)*Log[r*s]) - 2*(1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] + (-1 + r*s)*(2 + 3*Log[r*s] - 2*Log[1 - r*s]) * QPolyGamma[0, 1, r*s] + (1 - r*s)* QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] + r*s*Log[r*s]*(r*s^2*Log[r*s] * Derivative[0, 2][QPochhammer][r*s, r*s] - 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. FindRoot[{QPochhammer[r*s] == 1/s, 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s*Log[r*s])}, {r, 1/5}, {s, 2}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]] (* Vaclav Kotesovec, Oct 02 2023 *)

Formula

Equals limit_{n->infinity} A008485(n) * sqrt(n) / A270915^n.

A144064 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Comments

A(n,k) is also the number of partitions of n into parts of k kinds.
In general, column k > 0 is asymptotic to k^((k+1)/4) * exp(Pi*sqrt(2*k*n/3)) / (2^((3*k+5)/4) * 3^((k+1)/4) * n^((k+3)/4)) * (1 - (Pi*k^(3/2)/(24*sqrt(6)) + sqrt(3)*(k+1)*(k+3)/(8*Pi*sqrt(2*k))) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field with k elements that contain an upper-triangular matrix. - Geoffrey Critzer, Nov 11 2022

Examples

			Square array begins:
  1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5, ...
  0,   2,   5,   9,  14,  20, ...
  0,   3,  10,  22,  40,  65, ...
  0,   5,  20,  51, 105, 190, ...
  0,   7,  36, 108, 252, 506, ...
		

Crossrefs

Cf. A082556 (k=30), A082557 (k=32), A082558 (k=48), A082559 (k=64).
Rows n=0-4 give: A000012, A001477, A000096, A006503, A006504.
Main diagonal gives A008485.
Antidiagonal sums give A067687.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A144064Column(k, len) = DedekindEta(len, -k)
    for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
  • PARI
    Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^k.
A(n,k) = Sum_{i=0..k} binomial(k,i) * A060642(n,k-i):

A270913 Coefficient of x^n in Product_{k>=1} (1+x^k)^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 206, 855, 3585, 15155, 64525, 276278, 1188353, 5130999, 22226049, 96544003, 420368858, 1834203955, 8018057345, 35107961175, 153950675585, 675978772326, 2971700764941, 13078268135683, 57613905606273, 254038914924791, 1121081799217231
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),
           (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 26 2019

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = A327280 = 0.260542233142438469433860832160...

A109085 G.f. A(x) satisfies: A(x) = P(x*A(x)) where P(x) = A(x/P(x)) is the g.f. of the partition numbers A000041.

Original entry on oeis.org

1, 1, 3, 10, 38, 153, 646, 2816, 12585, 57343, 265401, 1244256, 5896512, 28200365, 135935424, 659754072, 3221354296, 15812501100, 77985955410, 386254209762, 1920391362054, 9580985321554, 47951223856445, 240680464689600
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2005

Keywords

Comments

a(n) = Sum[Product(1 + n/h(v)^2)]/(n+1), where the product is over all boxes v in the Ferrers diagram of a partition L of n, h(v) is the hook length of v and the summation is over all partitions L of n. Example: a(3)=10 because for the partitions L=(3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1},{3,2,1}, respectively, the products are (1+3/9)(1+3/4)(1+3/1)=28/3, (1+3/9)(1+3/1)(1+3/1)=64/3, (1+3/9)(1+3/4)(1+3/1)=28/3 and now a(3)=(1/4)(28+64+28)/3=10. - Emeric Deutsch, May 15 2008

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + ...
G.f. satisfies: P(x*A(x)) = A(x) where P(x) is the partition function:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
The g.f. A = A(x) also satisfies the identities:
(1) A(x) = 1/((1-x*A) * (1-x^2*A^2) * (1-x^3*A^3) * (1-x^4*A^4) * ...).
(2) A(x) = 1 + x*A/(1-x*A) + x^2*A^2/((1-x*A)*(1-x^2*A^2)) + x^3*A^3/((1-x*A)*(1-x^2*A^2)*(1-x^3*A^3)) + ...
(3) A(x) = 1 + x*A/(1-x*A)^2 + x^4*A^4/((1-x*A)*(1-x^2*A^2))^2 + x^9*A^9/((1-x*A)*(1-x^2*A^2)*(1-x^3*A^3))^2 + ...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x)/(1-x*A(x)) + x^2*A(x)^2/(2*(1-x^2*A(x)^2)) + x^3*A(x)^3/(3*(1-x^3*A(x)^3)) + x^4*A(x)^4/(4*(1-x^4*A(x)^4)) + x^5*A(x)^5/(5*(1-x^5*A(x)^5)) + ...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 105*x^4/4 + 506*x^5/5 + 2492*x^6/6 + 12405*x^7/7 + 62337*x^8/8 + ... + A008485(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    A109085list[n_] := Module[{m = 1, A = 1 + x}, For[i = 1, i <= n, i++, A = 1/Product[(1 - x^k*(A + x*O[x]^n)^k), {k, 1, n}]]; CoefficientList[A, x][[1 ;; n]]]; A109085list[24] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *)
    InverseSeries[x QPochhammer[x] + O[x]^25][[3]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^(n+1), {x, 0, n}]/(n+1), {n, 0, 24}] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A+x*O(x^n))^k))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0,n,x^m*A^m/prod(k=1, m, (1-x^k*(A+x*O(x^n))^k)))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 24 2012
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0,sqrtint(n+1),(x*A)^(m^2)/prod(k=1, m, (1-x^k*(A+x*O(x^n))^k)^2))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 24 2012
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(x^m*A^m/m)/(1-x^m*A^m+x*O(x^n)) )));polcoeff(A,n)} \\ Paul D. Hanna, Jun 01 2011
    
  • PARI
    {A008485(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A008485(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2012

Formula

G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x*eta(x)), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.
(2) A(x) = 1/G(x) where G(x) is g.f. of A109084.
(3) A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^n).
(4) A(x) = Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1-x^k*A(x)^k).
(5) A(x) = Sum_{n>=0} (x*A(x))^(n^2) / Product_{k=1..n} (1-x^k*A(x)^k)^2.
(6) A(x) = exp( Sum_{n>=1} (x^n/n) * A(x)^n/(1 - x^n*A(x)^n) ). - Paul D. Hanna, Jun 01 2011
Logarithmic derivative yields A008485, where A008485(n) is the number of partitions of n into parts of n kinds. - Paul D. Hanna, Feb 06 2012
a(n) ~ c * d^n / n^(3/2), where d = A270915 = 5.3527013334866426877724... and c = A366022 = 0.489635226684303373081541660578468619322416625... . - Vaclav Kotesovec, Nov 21 2016

A270919 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^n.

Original entry on oeis.org

1, 2, 12, 80, 552, 3912, 28224, 206208, 1520784, 11297546, 84413912, 633713808, 4776117216, 36115518376, 273868321536, 2081866609920, 15859616674336, 121046064563376, 925411686479820, 7085465166635440, 54323193841192752, 416993869451825424, 3204447137019290944
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^2) holds for all primes p. Cf. A291697. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(QPochhammer[-1, x]/QPochhammer[x, x])^n, {x, 0, n}]/2^n, {n, 0, 25}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{2*s*QPochhammer[r*s] == QPochhammer[-1, r*s], (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] + r*((Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) / (2*QPochhammer[r*s])) == 1}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[(1 - r*s)*Log[r*s]^2*(QPochhammer[r*s] / (Pi*(-r*s*(-1 + r*s) * Log[r*s]*(4*(2*ArcTanh[1 - 2*r*s] + QPolyGamma[0, 1, r*s])* Derivative[0, 1][QPochhammer][r*s, r*s] + r*Log[r*s]*(Derivative[0, 2][QPochhammer][-1, r*s] - 2*s*Derivative[0, 2][QPochhammer][r*s, r*s])) + 2*QPochhammer[r*s] * (4*r*s*ArcTanh[1 - 2*r*s] + 2*(-1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] - (-1 + r*s)*(-2 + Log[r*s] - 2*Log[1 - r*s])*QPolyGamma[0, 1, r*s] + (-1 + r*s) * QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] - 2*r*s*Log[r*s]* Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.299856802806668079413694689903953367699319...
a(n) = [x^n] 1/theta_4(x)^n, where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Nov 03 2017

A255672 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n).

Original entry on oeis.org

1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2015

Keywords

Comments

Number of partitions of n when parts i are of n*i kinds. - Alois P. Heinz, Nov 23 2018
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Main diagonal of A255961.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 6.468409145117839606941857350154192468889057616577..., c = 0.25864792865819067933968646380369970564... . - Vaclav Kotesovec, Mar 01 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A255526 Coefficient of x^n in Product_{k>=1} 1/(1+x^k)^n.

Original entry on oeis.org

-1, 1, -4, 17, -56, 172, -547, 1809, -6061, 20316, -68135, 229244, -774372, 2624119, -8912759, 30328593, -103382254, 352975681, -1206921212, 4132159452, -14163858895, 48601267199, -166930975524, 573872089212, -1974472043081, 6798561779868, -23425506369715
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1+x^k)^n,{k,1,n}],{x,0,n}],{n,1,30}]
    (* Calculation of constant c: *) 1/Sqrt[(4 - r^2*s^3*Derivative[0, 2][QPochhammer][-1, r*s])*Pi] /. FindRoot[{QPochhammer[-1, r*s] == 2/s, 2/s + r*s*Derivative[0, 1][QPochhammer][-1, r*s] == 0}, {r, -1/3}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.5097543279497033404372735..., c = 0.23322106096789389697797... .
Showing 1-10 of 32 results. Next