cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A008485 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Number of partitions of n into parts of n kinds. - Vladeta Jovovic, Sep 08 2002
Main diagonal of A144064. - Omar E. Pol, Jun 27 2012
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p >= 3. Cf. A270913. (End)

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
    Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    
  • PARI
    {a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */

Formula

a(n) = Sum_{pi} Product_{i=1..n} binomial(k_i+n-1, k_i) where pi runs through all nonnegative solutions of k_1+2*k_2+...+n*k_n=n. a(n) = b(n, n) where b(n, m)= m/n*Sum_{i=1..n} sigma(i)*b(n-i, m) is recurrence for number of partitions of n into parts of m kinds. - Vladeta Jovovic, Sep 08 2002
Equals the logarithmic derivative of A109085, the g.f. of which is (1/x)*Series_Reversion(x*eta(x)). - Paul D. Hanna, Apr 05 2012
Let G(x) = exp( Sum_{n>=1} a(n)*x^n/n ), then G(x) = 1/Product_{n>=1} (1-x^n*G(x)^n) is the g.f. of A109085. - Paul D. Hanna, Apr 05 2012
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165..., c = A327279 = 0.26801521271073331568695383828... . - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 30 2015

A109085 G.f. A(x) satisfies: A(x) = P(x*A(x)) where P(x) = A(x/P(x)) is the g.f. of the partition numbers A000041.

Original entry on oeis.org

1, 1, 3, 10, 38, 153, 646, 2816, 12585, 57343, 265401, 1244256, 5896512, 28200365, 135935424, 659754072, 3221354296, 15812501100, 77985955410, 386254209762, 1920391362054, 9580985321554, 47951223856445, 240680464689600
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2005

Keywords

Comments

a(n) = Sum[Product(1 + n/h(v)^2)]/(n+1), where the product is over all boxes v in the Ferrers diagram of a partition L of n, h(v) is the hook length of v and the summation is over all partitions L of n. Example: a(3)=10 because for the partitions L=(3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1},{3,2,1}, respectively, the products are (1+3/9)(1+3/4)(1+3/1)=28/3, (1+3/9)(1+3/1)(1+3/1)=64/3, (1+3/9)(1+3/4)(1+3/1)=28/3 and now a(3)=(1/4)(28+64+28)/3=10. - Emeric Deutsch, May 15 2008

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + ...
G.f. satisfies: P(x*A(x)) = A(x) where P(x) is the partition function:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
The g.f. A = A(x) also satisfies the identities:
(1) A(x) = 1/((1-x*A) * (1-x^2*A^2) * (1-x^3*A^3) * (1-x^4*A^4) * ...).
(2) A(x) = 1 + x*A/(1-x*A) + x^2*A^2/((1-x*A)*(1-x^2*A^2)) + x^3*A^3/((1-x*A)*(1-x^2*A^2)*(1-x^3*A^3)) + ...
(3) A(x) = 1 + x*A/(1-x*A)^2 + x^4*A^4/((1-x*A)*(1-x^2*A^2))^2 + x^9*A^9/((1-x*A)*(1-x^2*A^2)*(1-x^3*A^3))^2 + ...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x)/(1-x*A(x)) + x^2*A(x)^2/(2*(1-x^2*A(x)^2)) + x^3*A(x)^3/(3*(1-x^3*A(x)^3)) + x^4*A(x)^4/(4*(1-x^4*A(x)^4)) + x^5*A(x)^5/(5*(1-x^5*A(x)^5)) + ...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 105*x^4/4 + 506*x^5/5 + 2492*x^6/6 + 12405*x^7/7 + 62337*x^8/8 + ... + A008485(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    A109085list[n_] := Module[{m = 1, A = 1 + x}, For[i = 1, i <= n, i++, A = 1/Product[(1 - x^k*(A + x*O[x]^n)^k), {k, 1, n}]]; CoefficientList[A, x][[1 ;; n]]]; A109085list[24] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *)
    InverseSeries[x QPochhammer[x] + O[x]^25][[3]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^(n+1), {x, 0, n}]/(n+1), {n, 0, 24}] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A+x*O(x^n))^k))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0,n,x^m*A^m/prod(k=1, m, (1-x^k*(A+x*O(x^n))^k)))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 24 2012
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0,sqrtint(n+1),(x*A)^(m^2)/prod(k=1, m, (1-x^k*(A+x*O(x^n))^k)^2))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 24 2012
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(x^m*A^m/m)/(1-x^m*A^m+x*O(x^n)) )));polcoeff(A,n)} \\ Paul D. Hanna, Jun 01 2011
    
  • PARI
    {A008485(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A008485(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2012

Formula

G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x*eta(x)), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.
(2) A(x) = 1/G(x) where G(x) is g.f. of A109084.
(3) A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^n).
(4) A(x) = Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1-x^k*A(x)^k).
(5) A(x) = Sum_{n>=0} (x*A(x))^(n^2) / Product_{k=1..n} (1-x^k*A(x)^k)^2.
(6) A(x) = exp( Sum_{n>=1} (x^n/n) * A(x)^n/(1 - x^n*A(x)^n) ). - Paul D. Hanna, Jun 01 2011
Logarithmic derivative yields A008485, where A008485(n) is the number of partitions of n into parts of n kinds. - Paul D. Hanna, Feb 06 2012
a(n) ~ c * d^n / n^(3/2), where d = A270915 = 5.3527013334866426877724... and c = A366022 = 0.489635226684303373081541660578468619322416625... . - Vaclav Kotesovec, Nov 21 2016

A270914 Decimal expansion of a constant related to the asymptotics of A270913.

Original entry on oeis.org

4, 5, 0, 2, 4, 7, 6, 7, 4, 7, 6, 1, 7, 3, 5, 4, 4, 8, 7, 7, 3, 8, 5, 9, 3, 9, 3, 2, 7, 0, 0, 7, 8, 4, 4, 0, 6, 7, 6, 3, 1, 2, 8, 7, 5, 6, 0, 9, 1, 6, 2, 1, 6, 3, 3, 4, 6, 4, 5, 4, 0, 4, 2, 4, 0, 8, 8, 8, 4, 0, 3, 2, 7, 9, 0, 6, 7, 7, 3, 2, 0, 2, 2, 1, 9, 2, 0, 6, 9, 6, 2, 5, 2, 5, 5, 1, 1, 4, 5, 3, 7, 2, 9, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

This constant is very close to exp(5*Pi/(6*sqrt(2))) / sqrt(2) = 4.502476748630924546525119125234175537729... - Vaclav Kotesovec, May 17 2018

Examples

			4.502476747617354487738593932700784406763128756091621633464540424...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{2*s == QPochhammer[-1, r*s], r*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/2}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

Equals limit n->infinity A270913(n)^(1/n).

A206228 a(n) = [x^n] Product_{k=1..n} 1/(1 - x^k)^(n-k+1).

Original entry on oeis.org

1, 1, 4, 17, 80, 384, 1887, 9385, 47139, 238488, 1213588, 6204547, 31844710, 163978344, 846741721, 4382945317, 22735196277, 118151632006, 615032941924, 3206257881171, 16736910271178, 87472908459696, 457662760258109, 2396899780970552, 12564645719730297
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Number of partitions of n with 1 kind of n's, 2 kinds of (n-1)'s, ..., n kinds of 1's, see example. [Joerg Arndt, May 17 2013]

Examples

			Let [x^n] F(x) denote the coefficient of x^n in F(x); then
a(0) = 1;
a(1) = [x] 1/(1-x) = 1;
a(2) = [x^2] 1/((1-x)^2*(1-x^2)) = 4;
a(3) = [x^3] 1/((1-x)^3*(1-x^2)^2*(1-x^3)) = 17;
a(4) = [x^4] 1/((1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)) = 80; ...
as illustrated below.
The coefficients in Product_{k=1..n} 1/(1-x^k)^(n-k+1) for n=0..9 begin:
n=0: [(1), 0, 0, 0, 0, 0, 0, ...];
n=1: [1,(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...];
n=2: [1, 2,(4), 6, 9, 12, 16, 20, 25, 30, 36, 42, ...]; (A002620)
n=3: [1, 3, 8, (17), 33, 58, 97, 153, 233, 342, 489, 681, ...]; (A002625)
n=4: [1, 4, 13, 34, (80), 170, 339, 636, 1141, 1964, 3270, ...];
n=5: [1, 5, 19, 58, 157,(384), 874, 1869, 3803, 7408, 13907, ...];
n=6: [1, 6, 26, 90, 273, 746, (1887), 4474, 10062, 21620, ...];
n=7: [1, 7, 34, 131, 438, 1314, 3632, (9385), 22940, 53466, ...];
n=8: [1, 8, 43, 182, 663, 2158, 6445, 17944, (47139), 117842, ...];
n=9: [1, 9, 53, 244, 960, 3361, 10757, 32008, 89651, (238488), ...]; ...
where the coefficients in parenthesis start this sequence.
Incidentally, the antidiagonal sums in the above table form A206119.
From _Joerg Arndt_, May 17 2013: (Start)
There are a(3)=17 partitions of 3 into 1 kind of 3's, 2 kinds of 2's, and 3 kinds of 1's:
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:0  1:2  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:0  1:1  1:2  ]
06:  [ 1:0  1:2  1:2  ]
07:  [ 1:0  2:0  ]
08:  [ 1:0  2:1  ]
09:  [ 1:1  1:1  1:1  ]
10:  [ 1:1  1:1  1:2  ]
11:  [ 1:1  1:2  1:2  ]
12:  [ 1:1  2:0  ]
13:  [ 1:1  2:1  ]
14:  [ 1:2  1:2  1:2  ]
15:  [ 1:2  2:0  ]
16:  [ 1:2  2:1  ]
17:  [ 3:0  ]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n-k+1), {k, 1, n}], {x, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Aug 21 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^n))^(n-k+1)),n)}
    for(n=0,41,print1(a(n),", "))

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724158141653278798514832712869470973196907560641... and c = 0.2030089852709942695768237484498370155967795685257713505678384193773498... - Vaclav Kotesovec, Aug 21 2018

A303070 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^n.

Original entry on oeis.org

1, 2, 8, 35, 164, 787, 3857, 19147, 96004, 485009, 2465013, 12589315, 64555985, 332158127, 1714001409, 8866730665, 45968787524, 238778897128, 1242417984179, 6474394344503, 33784931507529, 176515163156311, 923265560495737, 4834081924982522, 25334170138318345, 132883719945537587
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2018

Keywords

Crossrefs

Main diagonal of A210764.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/(1 - x) Exp[n Sum[x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(n*Sum_{k>=1} x^k/(k*(1 - x^k))).
a(n) = A210764(n,n) = Sum_{j=0..n} A144064(j,n).
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165... and c = 0.4068869940800214657298372785820... - Vaclav Kotesovec, May 19 2018

A109084 G.f. A(x) satisfies: A(x) = 1/G000041(x/A(x)) where G000041(x) is the g.f. of the partition numbers A000041.

Original entry on oeis.org

1, -1, -2, -5, -17, -63, -253, -1062, -4615, -20570, -93538, -432211, -2023567, -9578815, -45767162, -220431025, -1069079067, -5216655257, -25592441875, -126157044454, -624560659184, -3103962569509, -15480272621533, -77450458331100, -388627340240958, -1955249529839424
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2005

Keywords

Comments

Note: coefficient [x^n] A(x)^n = -A000203(n) (sum of divisors of n) for n>0.

Examples

			The initial terms [x^0] through [x^n] of n-th self-convolution
are persistently small:
A^0: 1;
A^1: 1,-1;
A^2: 1,-2,-3;
A^3: 1,-3,-3,-4;
A^4: 1,-4,-2,0,-7;
A^5: 1,-5,0,5,0,-6;
A^6: 1,-6,3,10,3,6,-12;
A^7: 1,-7,7,14,0,7,0,-8;
A^8: 1,-8,12,16,-10,0,-8,8,-15;
A^9: 1,-9,18,15,-27,-9,-21,0,0,-13;
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant c: *) val = Sqrt[r*s^5*(-1 + s/r)*(Log[r/s]^2 / (2*Pi*(2*s^3*(-s*Log[1 - r/s] + ArcTanh[1 - 2*r/s] * (2*r - (r - s)*(Log[1 - r/s] - 2*Log[r/s]))) + (r - s)*(s^3*(2 - 2*Log[1 - r/s] + 3*Log[r/s]) * QPolyGamma[0, 1, r/s] - s^3*QPolyGamma[0, 1, r/s]^2 + s^3*QPolyGamma[1, 1, r/s] + r*Log[r/s]*(r*Log[r/s] * Derivative[0, 2][QPochhammer][r/s, r/s] - 2*s^2*Derivative[0, 0, 1][QPolyGamma][0, 1, r/s])))))] /. FindRoot[{QPochhammer[r/s] == s, (Log[1 - r/s] + QPolyGamma[0, 1, r/s])/Log[r/s] == 1 + (r*Derivative[0, 1][QPochhammer][r/s, r/s])/s^2}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 1000]; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* Vaclav Kotesovec, Oct 02 2023 *)
  • PARI
    a(n)=polcoeff(x/serreverse(x*eta(x+x*O(x^n))),n)

Formula

G.f.: A(x) = x/series_reversion(x*eta(x)). G.f.: A(x) = 1/G109085(x) where G109085(x) is g.f. of A109085.
a(n) ~ -c * d^n / n^(3/2), where d = A270915 = 5.35270133348664268777241581416... and c = 0.146705445870000769931272287955221766131167... - Vaclav Kotesovec, May 13 2018

A309986 Convolution of A270913 and A008485.

Original entry on oeis.org

1, 2, 9, 43, 206, 999, 4915, 24372, 121698, 611244, 3085612, 15645347, 79639602, 406809249, 2084567381, 10712007629, 55187254157, 284981396231, 1474729519719, 7646180479889, 39713643612380, 206600871071930, 1076372569004514, 5615363541987786, 29331204404385053
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A270913[n_] := SeriesCoefficient[Product[(1 + x^k)^n, {k, 1, n}], {x, 0, n}];
    A008485[n_] := SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A008485[k]*A270913[n-k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687... and c = 0.446705640528056029457240607298917821281915554...

A327215 Self-convolution of A008485.

Original entry on oeis.org

1, 2, 11, 54, 279, 1442, 7530, 39474, 207693, 1095522, 5790116, 30650038, 162451560, 861920492, 4577055823, 24323292984, 129338944225, 688128700422, 3662798123481, 19504467792378, 103899170100154, 553642311668244, 2951010332435759, 15733439067954134
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A008485[n_]:=SeriesCoefficient[Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A008485[k]*A008485[n-k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c^2 * Pi * d^n, where d = A270915 = 5.352701333486642687772415814165... and c = A327279 = 0.26801521271073331568695383828... (see A008485).

A327279 Decimal expansion of a constant related to A008485 and A327215.

Original entry on oeis.org

2, 6, 8, 0, 1, 5, 2, 1, 2, 7, 1, 0, 7, 3, 3, 3, 1, 5, 6, 8, 6, 9, 5, 3, 8, 3, 8, 2, 8, 0, 3, 2, 8, 6, 7, 9, 5, 0, 0, 6, 6, 6, 7, 5, 7, 2, 4, 2, 0, 3, 9, 4, 2, 6, 4, 4, 5, 9, 0, 4, 1, 5, 8, 4, 6, 9, 5, 3, 9, 0, 9, 4, 9, 9, 2, 6, 7, 0, 6, 0, 0, 5, 4, 3, 3, 5, 0, 1, 7, 4, 3, 9, 4, 2, 2, 3, 1, 2, 9, 5, 4, 0, 8, 3, 2, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2019

Keywords

Examples

			0.26801521271073331568695383828032867950066675724203942644590415846953909499267...
		

Crossrefs

Programs

  • Mathematica
    val = Sqrt[(1 - r*s)*(Log[r*s]^2/(2*Pi*(4*ArcTanh[1 - 2*r*s]*(r*s + (-1 + r*s)*Log[r*s]) - 2*(1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] + (-1 + r*s)*(2 + 3*Log[r*s] - 2*Log[1 - r*s]) * QPolyGamma[0, 1, r*s] + (1 - r*s)* QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] + r*s*Log[r*s]*(r*s^2*Log[r*s] * Derivative[0, 2][QPochhammer][r*s, r*s] - 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. FindRoot[{QPochhammer[r*s] == 1/s, 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s*Log[r*s])}, {r, 1/5}, {s, 2}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]] (* Vaclav Kotesovec, Oct 02 2023 *)

Formula

Equals limit_{n->infinity} A008485(n) * sqrt(n) / A270915^n.

A192435 Number of terms in n-th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 2, 6, 26, 110, 532, 2541, 12644, 63024, 318857, 1618947, 8277062, 42453073, 218597485, 1128527057, 5841301830, 30297014746, 157442596130, 819511659381, 4272054888643, 22299423992018, 116539878029773, 609718298887977, 3193136462042241, 16737951567806110
Offset: 1

Views

Author

Alois P. Heinz, Aug 18 2012

Keywords

Crossrefs

Main diagonal of A022818.
Cf. A008485.

Programs

  • Maple
    A:= proc(n, k) option remember;
          `if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
        end:
    b:= proc(n, i, k) option remember; `if`(n A(n, n):
    seq(a(n), n=1..40);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 1, 1, Sum[b[n, n, i]*A[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Feb 05 2015, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.35270133348664..., c = 0.0504640078963302151598181537452... . - Vaclav Kotesovec, Sep 03 2014, updated May 19 2018
Showing 1-10 of 12 results. Next