cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008485 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Number of partitions of n into parts of n kinds. - Vladeta Jovovic, Sep 08 2002
Main diagonal of A144064. - Omar E. Pol, Jun 27 2012
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p >= 3. Cf. A270913. (End)

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
    Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    
  • PARI
    {a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */

Formula

a(n) = Sum_{pi} Product_{i=1..n} binomial(k_i+n-1, k_i) where pi runs through all nonnegative solutions of k_1+2*k_2+...+n*k_n=n. a(n) = b(n, n) where b(n, m)= m/n*Sum_{i=1..n} sigma(i)*b(n-i, m) is recurrence for number of partitions of n into parts of m kinds. - Vladeta Jovovic, Sep 08 2002
Equals the logarithmic derivative of A109085, the g.f. of which is (1/x)*Series_Reversion(x*eta(x)). - Paul D. Hanna, Apr 05 2012
Let G(x) = exp( Sum_{n>=1} a(n)*x^n/n ), then G(x) = 1/Product_{n>=1} (1-x^n*G(x)^n) is the g.f. of A109085. - Paul D. Hanna, Apr 05 2012
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165..., c = A327279 = 0.26801521271073331568695383828... . - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 30 2015

A022818 Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1

Views

Author

Keywords

Examples

			Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
  1,  1,   1,   1,    1,    1,    1,     1, ...
  1,  2,   3,   4,    5,    6,    7,     8, ...
  1,  3,   6,  10,   15,   21,   28,    36, ...
  1,  5,  13,  26,   45,   71,  105,   148, ...
  1,  7,  23,  55,  110,  196,  322,   498, ...
  1, 11,  44, 121,  271,  532,  952,  1590, ...
  1, 15,  74, 237,  599, 1301, 2541,  4586, ...
  1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
  ...
		

References

  • Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Main diagonal gives: A192435.

Programs

  • Maple
    A:= proc(n, k) option remember;
          `if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
        end:
    b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
    # second Maple program:
    b:= proc(n, i, l, k) option remember; `if`(k=0,
          `if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
             b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
        end:
    A:= (n, k)->  b(n$2, 0, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jul 19 2018
  • Mathematica
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
  • PARI
    P(n, k) = #partitions(n-k, k); /* A008284 */
    tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020

Formula

From Petros Hadjicostas, May 30 2020: (Start)
A(n,k) = Sum_{s=1..n} A008284(n,s)*A(s,k-1) for n >= 1 and k >= 2 with A(n,1) = 1 for n >= 1.
A(n,k) = Sum_{s=1..n} binomial(k,s-1)*A081719(n-1,s-1) for n, k >= 1. (End)

Extensions

Edited by Alois P. Heinz, Aug 18 2012
Showing 1-2 of 2 results.