cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A008778 a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, 533, 651, 785, 936, 1105, 1293, 1501, 1730, 1981, 2255, 2553, 2876, 3225, 3601, 4005, 4438, 4901, 5395, 5921, 6480, 7073, 7701, 8365, 9066, 9805, 10583, 11401, 12260, 13161, 14105, 15093, 16126, 17205, 18331
Offset: 0

Views

Author

Keywords

Comments

Let m(i,1)=i; m(1,j)=j; m(i,j)=m(i-1,j)-m(i-1,j-1); then a(n)=m(n+3,3) - Benoit Cloitre, May 08 2002
a(n) = number of (n+6)-bit binary sequences with exactly 6 1's none of which is isolated. - David Callan, Jul 15 2004
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Sum of first n triangular numbers plus previous triangular number. - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
a(n) = Sum of first (n+1) triangular numbers plus n-th triangular number (see penultimate formula by Henry Bottomley). - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
For n > 0, a(n-1) is the number of compositions of n+6 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
The binomial transform of [1,4,4,1,0,0,0,...], the 4th row in A116672. - R. J. Mathar, Jul 18 2017

Examples

			G.f. = 1 + 5*x + 13*x^2 + 26*x^3 + 45*x^4 + 71*x^5 + 105*x^6 + 148*x^7 + 201*x^8 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190 eq. (11.4.7).

Crossrefs

Column 1 of triangle A094415.
Row n=4 of A022818.
Cf. A002411, A008779, A005712 (partial sums), A034856 (first diffs).

Programs

  • GAP
    List([0..50], n-> (n+1)*(n^2 +8*n +6)/6); # G. C. Greubel, Sep 11 2019
  • Magma
    [(n+1)*(n^2+8*n+6)/6: n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    seq(1+4*k+4*binomial(k, 2)+binomial(k, 3), k=0..45);
  • Mathematica
    Table[(n+1)*(n^2+8*n+6)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009, modified by G. C. Greubel, Sep 11 2019 *)
    LinearRecurrence[{4,-6,4,-1}, {1,5,13,26}, 51] (* G. C. Greubel, Sep 11 2019 *)
  • PARI
    Vec((1+x-x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
    
  • Sage
    [(n+1)*(n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Sep 11 2019
    

Formula

a(n) = dot_product(n, n-1, ...2, 1)*(2, 3, ..., n, 1) for n = 2, 3, 4, ... [i.e., a(2) = (2, 1)*(2, 1), a(3) = (3, 2, 1)*(2, 3, 1)]. - Clark Kimberling
a(n) = a(n-1) + A034856(n+1) = A000297(n-1) + 1 = A000217(n) + A000292(n+1) = A000290(n-1) + A000292(n). - Henry Bottomley, Oct 25 2001
a(n) = Sum_{0<=k, l<=n; k+l|n} k*l. - Ralf Stephan, May 06 2005
G.f.: (1+x-x^2)/(1-x)^4. - Colin Barker, Jan 06 2012
a(n) = A000330(n+1) - A000292(n-1). - Bruce J. Nicholson, Jul 05 2018
E.g.f.: (6 +24*x +12*x^2 +x^3)*exp(x)/6. - G. C. Greubel, Sep 11 2019

A022811 Number of terms in n-th derivative of a function composed with itself 3 times.

Original entry on oeis.org

1, 1, 3, 6, 13, 23, 44, 74, 129, 210, 345, 542, 858, 1310, 2004, 2996, 4467, 6540, 9552, 13744, 19711, 27943, 39452, 55172, 76865, 106200, 146173, 199806, 272075, 368247, 496642, 666201, 890602, 1184957, 1571417, 2075058, 2731677, 3582119, 4683595, 6102256
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

This also counts a restricted set of plane partitions of n. Each element of the set which contains the A000041(n) partitions of n can be converted into plane partitions by insertion of line feeds at some or all places of the "pluses." Since the length of rows in plane partitions must be nonincreasing, there are only A000041(L(P)) ways to comply with this rule, where L(P) is the number of terms in that particular partition. Example for n=4: consider all five partitions 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1 of four. The associated a(4)=13 plane partitions are 4, 31, 3|1, 22, 2|2, 211, 21|1, 2|1|1, 1111, 111|1, 11|11, 11|1|1 and 1|1|1|1, where the bar represents start of the next row, where a(4) = A000041(L(4)) + A000041(L(3+1)) + A000041(L(2+2)) + A000041(L(2+1+1))+ A000041(L(1+1+1+1)) = A000041(1) + A000041(2) + A000041(2) + A000041(3) + A000041(4). By construction from sorted partitions, all the plane partitions are strictly decreasing along each row and each column. - R. J. Mathar, Aug 12 2008
Also the number of pairs of integer partitions, the first with sum n and the second with sum equal to the length of the first. - Gus Wiseman, Jul 19 2018

Examples

			From _Gus Wiseman_, Jul 19 2018: (Start)
Using the chain rule, we compute the second derivative of f(f(f(x))) to be the following sum of a(2) = 3 terms.
  d^2/dx^2 f(f(f(x))) =
  f'(f(x)) f'(f(f(x))) f''(x) +
  f'(x)^2 f'(f(f(x))) f''(f(x)) +
  f'(x)^2 f'(f(x))^2 f''(f(f(x))).
(End)
		

References

  • W. C. Yang, Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Column k=3 of A022818.
First column of A039805.
A row or column of A081718.

Programs

  • Maple
    A022811 := proc(n) local a,P,p,lp ; a := 0 ; P := combinat[partition](n) ; for p in P do lp := nops(p) ; a := a+combinat[numbpart](lp) ; od: RETURN(a) ; end: for n from 1 do print(n,A022811(n)) ; od: # R. J. Mathar, Aug 12 2008
  • Mathematica
    a[n_] := Total[PartitionsP[Length[#]]& /@ IntegerPartitions[n]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 80}] (* Jean-François Alcover, Apr 28 2017 *)
    Table[Length[1+D[f[f[f[x]]],{x,n}]]-1,{n,10}] (* Gus Wiseman, Jul 19 2018 *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = Sum_{i=0..m} p(m,i)*a(n-1,i).
G.f.: Sum_{k>=0} p(k) * x^k / Product_{j=1..k} (1 - x^j), where p(k) = number of partitions of k. - Ilya Gutkovskiy, Jan 28 2020

Extensions

Typo corrected by Neven Juric, Mar 25 2013

A024207 Number of terms in n-th derivative of a function composed with itself 7 times.

Original entry on oeis.org

1, 1, 7, 28, 105, 322, 952, 2541, 6539, 15833, 37148, 83594, 183289, 389520, 809820, 1643375, 3272797, 6390745, 12279337, 23208483, 43252360, 79483096, 144265338, 258673983, 458747540, 804877837, 1398356706, 2406328974, 4104352128, 6940717598, 11643270856
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022817, A024208-A024210. First column of A050301.
Column k=7 of A022818.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
    a[n_] := a[n, 7];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

Extensions

More terms from Alois P. Heinz, Aug 18 2012

A024210 Number of terms in n-th derivative of a function composed with itself 10 times.

Original entry on oeis.org

1, 1, 10, 55, 265, 1045, 3817, 12583, 39148, 114235, 318857, 850576, 2190850, 5451721, 13184711, 31023842, 71286349, 160139911, 352574213, 761567304, 1616713932, 3376143283, 6944345483, 14080091227, 28169087367, 55644767253, 108617341172, 209626751905
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022817, A024207-A024209. First column of A050304.
Column k=10 of A022818.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
    a[n_] := a[n, 10]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A022817 Number of terms in 7th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 15, 74, 237, 599, 1301, 2541, 4586, 7785, 12583, 19536, 29327, 42783, 60893, 84827, 115956, 155873, 206415, 269686, 348081, 444311, 561429, 702857, 872414, 1074345, 1313351, 1594620, 1923859, 2307327, 2751869, 3264951, 3854696, 4529921, 5300175, 6175778
Offset: 1

Views

Author

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Programs

  • Maple
    a:= n-> n*(36+(-356+(645+(355+(39+n)*n)*n)*n)*n)/720:
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 18 2012
  • Mathematica
    Table[(n/720*(n^5+39*n^4+355*n^3+645*n^2-356*n+36)),{n,1,100}] (* Vincenzo Librandi, Aug 18 2012 *)

Formula

a(n) = n/720 * (n^5 + 39*n^4 + 355*n^3 + 645*n^2 - 356*n + 36).
G.f.: (x^5-4*x^4+x^3+10*x^2-8*x-1)*x/(x-1)^7. - Alois P. Heinz, Aug 18 2012

Extensions

More terms from Christian G. Bower, Aug 15 1999.

A131408 Repeated integer partitions or nested integer partitions.

Original entry on oeis.org

1, 1, 2, 5, 14, 35, 95, 248, 668, 1781, 4799, 12890, 34766, 93647, 252635, 681272, 1838135, 4958738, 13379885, 36100214, 97409045, 262833314, 709207394, 1913652308, 5163654671, 13933178390, 37596275726, 101446960109, 273737216768, 738632652929, 1993073801930
Offset: 0

Views

Author

Thomas Wieder, Jul 09 2007

Keywords

Comments

See A131407 for the labeled case (with much more explanation).
Also the number of sequences of distinct integer partitions (y_1, ..., y_k), containing no partitions of the form (111..1) other than (1), such that sum(y_1) = n and length(y_i) = sum(y_{i+1}) for all i = 1, ..., k-1. - Gus Wiseman, Jul 20 2018

Examples

			Let denote * an unlabeled element. Then a(n=3)=5 because we have [ *,*,* ], [ *, * ][ * ], [[ *,* ]][[ * ]], [[ *,* ][ * ]], [ * ][ * ][ * ].
From _Gus Wiseman_, Jul 20 2018: (Start)
The a(4) = 14 sequences of integer partitions:
  (4), (31), (22), (211),
  (4)(1), (31)(2), (22)(2), (211)(3), (211)(21),
  (31)(2)(1), (22)(2)(1), (211)(3)(1), (211)(21)(2),
  (211)(21)(2)(1).
(End)
		

Crossrefs

Programs

  • Maple
    A000041 := proc(n) combinat[numbpart](n) ; end: A008284 := proc(n,k) if k = 1 or k = n then 1; elif k > n then 0 ; else procname(n-1,k-1)+procname(n-k,k) ; fi ; end: A131408 := proc(n) option remember; local i ; if n <= 2 then n; else A000041(n)+add(A008284(n,i)*procname(i),i=2..n-1) ; fi ; end: for n from 1 to 40 do printf("%d,",A131408(n)) ; od: # R. J. Mathar, Aug 07 2008
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) + b(n-i, min(n-i, i)))
        end:
    a:= proc(n) option remember; b(n$2)+
          add(b(n-i, min(n-i, i))*a(i), i=2..n-1)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 03 2020
  • Mathematica
    t[, 1] = 1; t[n, k_] /; 1 <= k <= n := t[n, k] = Sum[t[n-i, k-1], {i, 1, n-1}] - Sum[t[n-i, k], {i, 1, k-1}]; t[, ] = 0; a[1]=1; a[2]=2; a[n_] := a[n] = PartitionsP[n] + Sum[t[n, i]*a[i], {i, 2, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 02 2017 *)
    roo[n_]:=If[n==1,{{{1}}},Join@@Cases[Most[IntegerPartitions[n]],y_:>Prepend[(Prepend[#,y]&/@roo[Length[y]]),{y}]]];
    Table[Length[roo[n]],{n,10}] (* Gus Wiseman, Jul 20 2018 *)

Formula

a(n) = A000041(n) + Sum_{i=2..n-1} A008284(n,i)*a(i).
a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399866618837633..., c = 0.232635324064951140265176690908381464098550827908380222089145... . - Vaclav Kotesovec, Sep 04 2014

Extensions

Edited and extended by R. J. Mathar, Aug 07 2008
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020

A022812 Number of terms in n-th derivative of a function composed with itself 4 times.

Original entry on oeis.org

1, 1, 4, 10, 26, 55, 121, 237, 468, 867, 1597, 2821, 4952, 8421, 14206, 23439, 38324, 61570, 98112, 154111, 240197, 370015, 565802, 856664, 1288366, 1921016, 2846572, 4186730, 6122369, 8893904, 12851713, 18460961, 26388354, 37519159, 53101687, 74792210
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022818, A024207-A024210. First column of A039806.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
    a[n_] := a[n, 4]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A022813 Number of terms in n-th derivative of a function composed with itself 5 times.

Original entry on oeis.org

1, 1, 5, 15, 45, 110, 271, 599, 1309, 2690, 5436, 10545, 20148, 37341, 68223, 121878, 214846, 371993, 636570, 1073325, 1790721, 2950922, 4816603, 7778937, 12455988, 19761148, 31108121, 48572686, 75307513, 115909727, 177255526, 269294119, 406708721, 610593948
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022818, A024207-A024210. First column of A039807.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A022814 Number of terms in n-th derivative of a function composed with itself 6 times.

Original entry on oeis.org

1, 1, 6, 21, 71, 196, 532, 1301, 3101, 6956, 15217, 31951, 65670, 130914, 256150, 489690, 920905, 1699693, 3092751, 5540571, 9802091, 17114237, 29550346, 50444952, 85264328, 142682505, 236649524, 389033014, 634408230, 1026350152, 1648328017, 2628254619
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022818, A024207-A024210. First column of A050300.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A022815 Number of terms in 5th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 7, 23, 55, 110, 196, 322, 498, 735, 1045, 1441, 1937, 2548, 3290, 4180, 5236, 6477, 7923, 9595, 11515, 13706, 16192, 18998, 22150, 25675, 29601, 33957, 38773, 44080, 49910, 56296, 63272, 70873, 79135, 88095, 97791, 108262, 119548, 131690
Offset: 1

Views

Author

Keywords

Examples

			a(7) = 7*28 + (7*0+6*1+5*3+4*6+3*10+2*15+1*21) = 322. [_Bruno Berselli_, Jun 22 2013]
		

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Programs

Formula

a(n) = n*(n+1)*(n^2+13*n-2)/24. - John W. Layman, Apr 27 2000
G.f.: x*(1-2*x^2+2*x)/(1-x)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
a(n) = n*A000217(n) + sum((n-i)*A000217(i), i=0..n-1). [Bruno Berselli, Jun 23 2013]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
More terms from Christian G. Bower, Aug 15 1999.
Showing 1-10 of 17 results. Next